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On the Use of Linear Camera-Object
Interaction Models in Visual Servoing

Benedetto Allotta and Carlo Colombo

Abstract—We investigate the exploitation of linear models of camera-
object interaction for an efficient modeling and control of image-based
visual servoing systems. The approach includes a method for coping
with those representation ambiguities typical of linear interaction models
which may affect both planning and control. The implementation of an
eye-in-hand servoing system based on affine camera models and using
image contours as relevant visual features is described and discussed. The
system, including an image planner, a two-dimensional/three-dimensional
(2-D/3-D) controller, and a visual analysis module, allows an intuitive
specification and execution of relative positioning tasks w.r.t. still or
moving rigid objects. Results of real-time experiments with a robotic
platform featuring a PUMA manipulator provide a further insight into
characteristics and performance of affine visual servoing systems.

Index Terms—Affine interaction models, eye-in-hand systems, visual
servoing.

I. INTRODUCTION

The use of visual sensors in the exteroceptive feedback loop
of a robot system, referred to asvisual servoing, appears to be a
natural approach to developing flexible positioning strategies, with
applications including robot grasping, manipulation, and navigation
(conveyor belt management, part-placement, assembly, etc.) [1], [2].

Several approaches to visual servoing were experimented in the re-
cent past. Three-dimensional (3-D)-based approaches rely on closing
the loop in the Cartesian space [3], [4]. These are less robust than
image-based approaches [5], [6], where error signal measurement and
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loop closure are performed directly at the image level, thus bypassing
any inaccuracies in camera calibration and kinematic models [7].

Notwithstanding the improvements of the last few years, much
work remains to be done on both the control and computer vision
aspects of visual servoing. Design issues with a key impact on the
overall characteristics and performance of a visual servoing system
are the models of visual interaction and the type of image features
used for object tracking. The tracking strategies proposed so far
have been based mainly on realistic models of camera projection
(e.g., perspective) but rather simple primitives such as points or
lines [8]–[10]. Yet, on the one hand tracking such primitives can be
infeasible and/or lead to unreliable results for some robotic contexts,
and on the other hand simpler camera models are accurate enough to
carry out visual analysis in a number of real contexts [11], [12].

In this paper, we investigate using linear approximations in the
modeling of an image-based visual servoing system with the purpose
of devising control strategies. In Section II, we show that embedding
an affine camera-object interaction model into the system model,
the linear mapping between appearance evolution and 3-D motion
assumes a form which is particularly suitable for real-time servoing,
since it is independent of the number and type of features being
tracked over time. We also expound a method to cope with the
intrinsic limitations of linear models while keeping the advantages
of the proposed framework.

The implementation of an affine visual servoing system featuring
a manipulator-mounted camera and using active, affine-deformable
contours as image features is described and motivated in Section III.
The system includes a planner which permits unambiguous and safe
task completion, an image-based servo controller, and an estimation
module for on-line system parameter identification. Experimental
results obtained with a setup featuring a PUMA manipulator are
discussed in Section IV, providing an insight into system performance
in terms of robustness and application perspectives.

II. THEORETICAL FRAMEWORK

A. Preliminaries and Notation

Let us constrain the positioning problem to the geometric interac-
tion between a camera and a single rigid object, in motion one w.r.t.
the other. IfPPP is a generic point of the object, its coordinates are
expressed in a generic reference framefwg = fPPPw;

wX; wY; wZg
aswPPP 2 IR3. In the following, we use a camera-centered framefcg
fixed to the camera and withcZ parallel to the optical axis, and a
framefog fixed to the object. Relative motion of camera and object
is described by means of the relative twist screw�VVV = VVV c � VVV o,
whereVVV c = [TTT Tc 


T
c ]
T andVVV o = [TTT To 


T
o ]
T are, respectively,

the camera and object twist screws,TTT and
 indicating translational
and angular velocities.

Let ppp = [x y]T 2 IR2 be the image projection of pointPPP .
The generic camera projection model is expressed byppp = �(oPPP ; 


),
where


 2 IRg is a vector of camera parameters. The image velocity
of ppp can be expressed as

_ppp = B(ppp; �; 


) c�VVV (1)

where matrixB is a function of the image point, its associated depth
�: IR2 � IRg ! IR s.t. �(ppp; 


) = cZ, and camera parameters. By
choosing the2N -vector ppp = [pppT

1
pppT
2

� � � pppTN ]T of image point
coordinates as the visual state, and the relative twistc�VVV as the input
vector, the dynamics of image appearance is driftless, time-varying
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Fig. 1. Block diagram of the image-based visual servoing scheme.

and input-affine

_ppp = B(ppp; t) c�VVV (2)

where B(ppp; t) = [BT (ppp
1
; t) � � � BT (pppN ; t)]

T is a 2N � 6
matrix, whose explicit dependence ont encodes the dependence on
� and 


.

Image-based control requires that image pointspppi (or any other
kind of features used) be tracked, and other parameters related to
object pose and shape be estimated. Specifically, the structure of B
depends on camera model� and object depth�.

B. Visual Servoing with Affine Interaction Models

Linear approximations of camera-object interaction rely on the
assumption that object depth be a linear function of image co-
ordinates. Simple linear approximations of perspective projection
are theweak perspectiveand para-perspectivecamera models [13].
Embedding in (1) the first order Taylor expansion of depth�(ppp; 


) �
�b + [@�=@ppp]jppp ; 
 � (ppp � pppb) yields an image velocity_ppp which is
linear in ppp

_ppp = _pppb +Mb (ppp� pppb) (3)

being pppb the imaged object centroid or any other well trackable
point, andMb a 2 � 2 time-varying matrix independent ofppp. As
a consequence of (3), system dynamics of (2) can be synthetically
expressed as

ddd = Lb
c�VVV (4)

whereddd 2 IR6, and Lb is a time-varying 6� 6 matrix which is
independent of system state, and expressing a one-to-one correspon-
dence between two-dimensional (2-D) appearance evolution and 3-D
relative motion of camera and object.

Once the control actionddd = g(pppdes; ppp) has been synthesized, an
appropriate generalized inverse of Lb is used to generate relative
motion. Since the size ofddd is constant and small regardless of state
dimension, control complexity is decoupled from image tracking
complexity (which still depends, of course, on the numberN of
tracked points).

Possible choices forddd are linear combinations of the components
of _pppb = [ub vb]

T and of the entries of the image velocity Jacobian

Mb =
ux vx
uy vy

using

ddd = [ub vb ux + vy vx � uy ux � vy vx + uy]
T (5)

and the paraperspective camera model, the structure of Lb is shown in
(6) at the bottom of the page, where� is the focal length,p andq are
the components (camera coordinates) of the depth gradient evaluated
at (cXb;

cYb), and c = �(0; 
) is s.t.

c=�b = (�� p xb � q yb)=�: (7)

III. SYSTEM IMPLEMENTATION

Fig. 1 shows the basic blocks of a control scheme embodying the
concepts of the proposed framework in a eye-in-hand robotic system.
The basic components of the camera motion control block are a task
planner, an image-level controller, and a robot controller producing 3-
D motion commands for the robot manipulator based on a 2-D control
signal. Visual analysis is devoted to track the object image appearance
and to estimate on-line 3-D parameters relevant for control.
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A. Visual Analysis and Pose Disambiguation

We consider as image stateppp a set ofN spline control pointsppp
i
,

which are used by the 2-D visual tracking module to represent and
track object appearance by means of active contours [14]. A quadratic
B-spline representation is used for active contours

ppp(s) =

N

i=1

fi(s)pppi (8)

whereppp(s), s 2 [0; 1] is the generic contour point, and thefi’s
are the spline blending functions; such a representation allows to
compactly encode object image shape—small values ofN for a fixed
shape complexity—and optimize image processing. Pointpppb is taken
here as the contour centroid. Apart from providing at any time a
robust estimate of image state based on a Kalman filter, the tracking
module also produces an on-line estimate of the state evolutionddd
defined in (5): this is accomplished through a temporal analysis of
affine contour deformations [15].

Control relies on the matrix Lb defined in (6), whose entries are
initialized and estimated on-line by assuming a weak perspective
camera model. As shown in [16], such a model depends on a few
camera parameters, namely� (intrinsic, and assumed to be known),
andp, q, c, and�b (extrinsic). At startup, pose and distance extrinsic
parameters are estimated as expounded in [16] via a least squares
match of the current image appearance against a reference object
appearance. In particular, pose computation takes place in two steps.
First, a solution affected by the well-known reversal ambiguity (with
any linear camera model, so with weak perspective, the same visual
appearance is shared by pairs of object poses) is obtained. Second,
the disambiguation strategy proposed in [13] is used by choosing as
solution, of the two ambiguous poses found, the one which better
fits raw image data into a nonlinear, full perspective camera model.
(Notice that alternative methods exist for computing the pose of
planar objects directly under full perspective—see, e.g., [17] and
references.) At run-time, extrinsic parameters are obtained as in [15]
by coupling together an on-line estimator and a first-order predictor.
Specifically, the estimator relies on explicitly embedding the weak
perspective constraintxb = yb = 0 in (6). This is combined with (4)
and (5), to obtain the vectorzzz(p; q; c) = [p=c q=c 1=c]T as the
solution of the linear system

�Tx �Ty 2�Tz
�Tx ��Ty 0
�Ty �Tx 0

zzz =
ux + vy
ux � vy
vx + uy

(9)

from whichp, q, andc are soon obtained, and used in (7) to evaluate
the remaining extrinsic parameter�b.

As shown in [9], the accuracy of camera parameters estimates
affects the speed of convergence; yet, as it will be clear in Section IV,
even a rough estimate of camera parameters is sufficient in our
system.

B. Control Strategy

In image-based servoing, a visual task can be described in terms of
a desired evolution_pppdes(t) of object appearance. According to our
formulation, the task is represented in a synthetic way byddddes(t).
The 2-D controller computes a 6-D error���(pppdes; ppp) between the
desired and estimated image states evaluated in a least squares sense
as shown in [15]. Such an error is used by the 3-D controller to
generate a robot velocity twist reference command. The manipulator
Jacobian is assumed to be known with sufficient accuracy to use
the Cartesian motion vector in the place of the joint motion vector
for control: besides, the closure of a feedback loop at the image
level ensures that even inaccuracies in the knowledge of the robot

Fig. 2. Viewpoint surface, pose ambiguity, and frontoparallel singularity.

kinematics can be largely compensated by the control system. The
presence of singularities in the kinematic structure holding the camera
also has to be considered and taken into account. For instance, if
the camera is mounted on the end-effector of a robot manipulator,
in some configurations the singularities of the manipulator Jacobian
may cause the impossibility of producing the desired camera motion.

The following control law, based on the interaction model (4)
and using both feedforward (planning,ddddes) and feedback (visual
analysis,���) information is adopted

c�VVV = Ly

b (ddddes + K ���) (10)

where K is a 6� 6 diagonal matrix of feedback gains. In order to
cope with moving objects, an estimatêVVV o of object velocity is also
required, which is obtained as

V̂VV o = V̂VV c � Ly

b d̂dd (11)

V̂VV c being derived from manipulator proprioceptive sensor information
and d̂dd from visual analysis. The required velocity setpoint for the
camera motion is finally computed asVVV c = c�VVV + V̂VV o.

C. Planning and Task Disambiguation

The planner is in charge for generating a smooth trajectory for
the desired visual appearance of the object toward the goal one. Our
planner module generates a trajectory for each of the control points,
which is polynomial (degreeh � 1) in time and linear in the image
space. Smooth trajectories are obtained, e.g., with cubic (h = 3) and
quintic (h = 5) polynomials [18].

The pose ambiguity determined by the use of linear approximations
to camera-object interaction has to be explicitly considered and solved
also at the planner level. Let us introduce theviewpoint surface
as the semisphere whose points (corresponding one-to-one to the
innerwise unit normals) represent all possible relative orientations
of the object plane—i.e., the plane which fits best the object’s
visible surface—w.r.t. the camera (Fig. 2). Any continuous change
of orientation corresponds to a curvilinear path on this surface. The
polynomial planner automatically selects as goal viewpoint, of the
two dual solutions which reflect the pose ambiguity for any given
and 2-D goal appearance, the one which is closest to the initial 3-D
viewpoint moving along a geodesic path of the viewpoint surface. For
instance, letAAA be the initial viewpoint, andAAA0 be its dual, placed at its
opposite side. It is evident thatAAA0 cannot be reached fromAAA via only
one polynomial planning step (the initial and goal 2-D appearances
do actually coincide) and that the relative orientation will not change.
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In order to reachAAA0, we augment the planning strategy, by splitting
the path in two parts, namelyAAAOOO andOOOAAA0, whereOOO represents a
frontoparallel view of the object. Hence, in the general case, given
AAA and a goal visual appearance corresponding to the two dual views
BBB andBBB0, augmented planning proceeds as follows:

1) determine the final viewpoint, and establish whether it is
“reachable”(BBB) or “unreachable”(BBB0) via a single polynomial
planning step;

2) in the first case, planAAABBB and execute;
3) in the second case, split planning and execution into the two

stepsAAAOOO andOOOBBB0.

Visualizing smooth pose changes as trajectories on the viewpoint
surface also provides an insight into the problem of kinematic
singularities and how to avoid them. It is easy to show that with
our formulation the frontoparallel poseOOO corresponds to the only
algorithmic singularity, in that the determinant of Lb vanishes iden-
tically iff p = q = 0. In order to avoid arbitrarily large desired
camera velocities during a two-step planning strategy, a “forbidden”
regionF is defined on the viewpoint surface aroundOOO, inside which
p2 + q2 is small enough to assume that Lb be singular. When

the system entersF , the loop is opened thus allowing to crossOOO
without falling into singularity. As a case study, consider positioning
the camera w.r.t. the object from an initial poseBBB: p = q = 0.01 to
its dual poseBBB0: p = q = �0.01 as the imaged centroid remains at
the image origin(pppdes

b
= 0). Let the relative distance and focal length

be respectively�b = c = 400 mm and� = 8 mm, and the border of
the forbidden region be the parallel on the interaction surface with
radius0:0001

p
2. Then the loop is opened as the poseBBBF : p = q =

0.0001 is reached, and closed again atBBB0

F : p = q = �0.0001. In
either case, the velocity twist (in mm/s and rad/s) equalsc�VVV =
[2000 � 2000 � 0:0 � 5:0 � 5:0 0:0005]T , so that the relative
velocity twist is maintained without discontinuity. During the loop
opening the system continues to estimate the 3-D parameters and
in particularp and q, in order to detect the breakthrough condition
p2 + q2 > 0:0001

p
2 allowing to reactivate the loop closure.

IV. EXPERIMENTS

In this Section, results are presented for two sets of experiments
involving a camera being positioned w.r.t. still planar and non planar
objects between the same initial and goal configurations of the robot
arm (see Fig. 3).

A. System Setup and Operation

1) Hardware and Software:The hardware setup for eye-in-hand
experiments consists of a PUMA 560 manipulator equipped with
a wrist-mounted Sony camera and commanded through a MARK
III controller, and a PC 486/66 MHz equipped with an Imaging
Technology frame grabber (Fig. 4). The MARK III controller runs
VAL II programs and communicates with the PC via the ALTER
real-time protocol using an RS-232 serial interface. Due to the
computational burden of tracking algorithms, a multirate real-time
control was implemented. New velocity setpoints are generated by
the PC with a sampling rate�2 = K �1, where �1 = 28 ms is
the sampling rate of the ALTER protocol, andK is an integer
which depends on the dimension of the state vectorN . The visual
computation time usingN = 10 control points for contour tracking is
less than 100 ms; hence,K is set to 4. A suitably fast communication
process maintains the handshaking with the MARK III controller by
communicating the most recent velocity twist setpoint generated by
the high level—and slower—process via a mailbox.

2) Parameter Setting and Initialization:Camera optics data-
sheets provide a raw value for focal length and pixel dimensions;

(a)

(b)

Fig. 3. (a) Initial and (b) goal configurations for the first set of experiments.
The monitor displays the scene as seen by the wrist-mounted camera.

Fig. 4. System setup and communications.

the remaining intrinsic parameters of the camera are ignored. Infinite
impulse response digital filters are used for smoothing sensory data
and enhance the quality of all visual measurements (visual state,
object motion). Filter and feedback gains are tuned experimentally.
The task planning module uses cubic trajectories, which provide a
good tradeoff between smoothness and contour inertia.

Operation with the system starts by bringing the robot in its goal
configuration, and initializing—by means of a computer mouse—an
active contour in the image, which automatically locks on the goal
image appearance. The locked contour position (centroid coordinates)
and shape are recorded, and the robot is moved to the initial
configuration while the active contour tracker keeps itself locked
to the time-changing object appearance. The matrix Lb of (6) is
initialized “by hand” based on a visual evaluation of distances and
angles, thus providing a coarse estimate ofp, q, and c with an
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TABLE I
GOAL AND REACHED CONFIGURATIONS (ENCODER MEASUREMENTS)
OF THE ROBOT END-EFFECTOR AFTER110 sFOR EXPERIMENTS 1, 2,
AND 3. THE QUANTITIES “o,” “ a,” AND “t” ARE THE ORIENTATION,

ALTITUDE, AND TOOL ANGLES (DEGREES), RESPECTIVELY, USED

BY VAL II TO REPRESENT THEEND-EFFECTOR ORIENTATION.
END-EFFECTORTRANSLATIONS “x,” “ y,” AND “z” ARE IN MILLIMETERS

error up to 50% w.r.t. the ground truth values. Besides, in the
experiments presented, it was deliberately chosen not to update Lb

at run-time, so as to provide difficult operating conditions for the
system—the speed of convergence is significantly reduced without
on-line parameter estimation, as expected and as confirmed by
experimental evidence—and prove the robustness of the control
scheme. It is worth noting that uncertainty in the estimate of Lb

and finite resolution of robot velocity commands may affect steady
state accuracy.

B. Discussion of Experiments

1) Experiments 1–3—Control Modes:The system can be run in
diverse control modes, according to the planning information it uses.
In the general case, planned trajectories are specified both in terms
of desired state(pppdes) and of differential evolution(ddddes).

In the following experiments, for a fixed task—positioning the
camera w.r.t. a book upon a table—the system is run in three different
modes. This allows us to gain an insight into system behavior and
performance.

In experiment 1, the system is run inoutput regulation mode: no
planning is provided (pppdes(t) = pppgoal 8t andddddes = 0), thus forcing
the system to rely only on feedback. This experiment is useful to
assess the stability of control, and tune up the feedback gains so
as to obtain a slightly underdamped behavior. Since the feedback
error depends on the mismatch between the current and goal states,
which can be large, high feedback gains should be avoided in this
mode, as they could cause system instability due to the presence of
various sources of inaccuracy. The final desired 3-D configuration is
reached with a considerable error, also due to the fact that, although
the robot is commanded in velocity, the resolution of the velocity
command is limited to 16 b, so that any velocity command under
threshold is truncated to zero and does not produce any motion of
the manipulator. Specifically, in this experiment the magnitude of
the manipulator position error evaluated from the data of Table I is
37.0 mm.

The servoing mode(characterized byddddes = 0 and a not constant
pppdes(t)) is used in experiment 2 to assess the tracking perfor-
mance of the control scheme as the system is forced to compen-
sate by feedback the tracking error���(pppdes(t); p̂pp(t)). The presence
of trajectory planning keeps the error small; hence a stable be-
havior is obtained even by using higher gains than before. This
avoids the presence of large errors in the final 3-D configuration
which, as a typical performance, is reached with an error of within
a few degrees (orientation) and millimeters (translation). In this
experiment, after 110 s, the magnitude of the position error is
26.7 mm.

Experiment 3 is executed inplanning mode(i.e., the normal mode),
featuring the simultaneous use of trajectory planning, feedforward,

Fig. 5. Positioning in planning mode: image plane. The initial, current, and
goal contours are shown in each frame of the sequence.

and feedback control (Fig. 5). Results in terms of errors during
execution are expected to be smaller than in the previous case, due to
the presence of the feedforward control based on the desired trajectory
ddddes. Indeed, after 110 s, the magnitude of the position error is 17.5
mm, with a significant improvement w.r.t. both the servoing and
ouput regulation modes.

Figs. 6 and 7 allow a further performance comparison between
the servoing and planning modes. The data reported in the figures
are the first two (centroid) components and the last four (shape)
components of the three vectorsddd, ddddes, and ���(pppdes; ppp) appearing
in (10), and the translational and angular camera velocities. The
image centroid error is in both cases always below one tenth of
millimeter, i.e., less than 1% of the linear dimension of the CCD
imaging area. The desired object appearance is reached with a
negligible error within about 75 s in planning mode, while about
110 s are required in servoing mode: this demonstrates the effec-
tiveness of adding feedforward to the control, as the job of the
feedback is significantly alleviated and the tracking lag reduced.
Concerning velocities, cubic-based planning, and effective tracking
in both modes contribute to obtain relative velocity and acceleration
profiles with a negligible chattering. Yet, notice that the feedforward
term (which is dropped out after about 75 s in experiment 3)
makes planning mode more sensitive than servoing mode to the
accuracy of camera extrinsic parameters. In summary, despite the
absence of run-time 3-D parameters updating, both the planning
and servoing modes exhibit a satisfactory performance (see again
Table I). A tradeoff is also demonstrated for the two operating modes,
between speed of convergence and sensitivity to extrinsic parameters
estimation.
2) Experiments 4–6—Planar versus Nonplanar Objects:A second

set of experiments is devoted to illustrate the dependence of system
performance on the object planarity condition. To this aim, the system
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(a)

(b)

(c)

Fig. 6. Servoing mode: (a) contour centroid error, (b) contour shape error,
and (c) camera velocities.

is run to achieve—in planning mode—the same positioning task in
the presence of a planar object (a computer diskette) and a nonplanar
object (the shoe part of Fig. 8).

(a)

(b)

(c)

Fig. 7. Planning mode: (a) contour centroid error, (b) contour shape error,
and (c) camera velocities.

Fig. 9(a) shows the plots of 2-D control quantities and 3-D
velocities obtained with the planar object, and row 2 of Table II gives
the final positioning mismatch for experiment 4. In this experiment,
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Fig. 8. Two views of the nonplanar object used in experiment 5.

TABLE II
GOAL AND REACHED CONFIGURATIONS (ENCODER MEASUREMENTS)

OF THE ROBOT END-EFFECTORAFTER 144 sFOR EXPERIMENTS 4, 5,
AND 6. ROW 2 IS OBTAINED WITH THE PLANAR OBJECT AND A SET

GAINS LARGE ENOUGH TO LEAD THE SYSTEM TO INSTABILITY WITH

THE NONPLANAR OBJECT. ROWS 3 AND 4 ARE OBTAINED WITH THE

NONPLANAR AND PLANAR OBJECTS, RESPECTIVELY, USING SMALLER GAINS

control gains were tuned so as to obtain a quite underdamped
behavior. The same, critical gains provided an unstable behavior
when attempting to replicate experiment 4 with the nonplanar object.
After a new set of (smaller) stable gains was found, a worse
system performance was observed (experiment 5) with the nonplanar
object—see Fig. 9(b) and row 3 in Table II. The set of gains used
in experiment 5 was used again with the planar object (experiment
6), with a resulting intermediate performance—Fig. 9(c) and row 4
in Table II.

The results of experiments 4–6 indicate that the affine servoing
approach can be successfully applied to nonplanar objects, provided
that control gains be suitably lowered w.r.t. the planar object case.
The modeling error caused by the presence of nonplanar objects also
produces a slight performance degradation for any given set of stable
gains tuned for the planar case.

V. CONCLUSION

The use of linear approximations to simplify both state description
and control interaction in image-based visual servoing was investi-
gated. A way to cope with the intrinsic limitations of linear interaction
models was expounded. An eye-in-hand implementation featuring
a PUMA arm and embodying the linearized framework was also
described and discussed. The system includes modules for visual
analysis, planning, and control; objects are represented and tracked
by means of active contours. Experimental results demonstrating the
behavior of the system at work were shown. The method allows
positioning w.r.t, planar and nonplanar objects as well, although in
the latter case at the expense of a diminished accuracy and stability
of the system.

The main contribution of the work is a formulation that makes it
easy and intuitive the problem of specifying, planning, and controlling
an eye-in-hand robotic system that must perform positioning tasks.
Future study will concern the possibility of using the same approach
in mobile robotics, where additional problems arise due to the
presence of constraints in the motion of a camera mounted on a
nonholonomic mobile base. Another direction of investigation is the
improvement of the approach to resolve the disambiguation problem
in a more efficient way.

(a)

(b)

(c)

Fig. 9. Camera velocities and control signals for experiments (a) 4 (planar
object, critical gains), (b) 5 (nonplanar object, small gains), and (c) 6 (planar
object, small gains).
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On the Trajectory Planning of a Planar
Elastic Manipulator Under Gravity

Pritam Kumar Sarkar, Motoji Yamamoto, and Akira Mohri

Abstract—Feedforward control design of flexible robot can take ad-
vantage of planning algorithm. In this paper two such algorithms have
been presented—one is for static case and the other is for dynamic case.
Both the algorithms are iterative in nature and are computationally based
on the minimization of position or tracking error defined at the end-
effector level. The algorithms are simple but computationally expensive.
The performance is tested on a planar two-link arm through simulation
and the results show the capability of the methods to compensate error
due to deflection of the flexible links at the time of static condition of
positioning and to track a given trajectory effectively at the time of
dynamic condition of tracking under end kinematic constraints.

Index Terms—Elastic manipulator, tracking error minimization, tra-
jectory planning, under gravity.

I. INTRODUCTION

A key issue in the feedforward compensation is the computation
of actuator torques that are required for an arm to track a specified
trajectory. In case of rigid link the computation is straightforward
whereas in case of flexible link it is complex because of the link
deformations during motion. One of the early works has been reported
by Bayoet al. [2]. The work has been based on solving the inverse
dynamic equations in the frequency domain for a given end point
acceleration profile. The authors have also pointed out the noncausal
behavior of the flexible arm. However, the technique results in a
large time penalty at the start as well as at the end of motion thus
increasing the travelling time considerably. Another important point
is that since the method is based on nominal joint motion the tip
accuracy may not be very high. In fact, as the flexibility of the
arm increases the accuracy at the tip decreases. Asada and Ma [1]
have proposed a technique that considers assumed mode model for
a generaln-link case and solves the inverse dynamic problem by
using a special moving coordinate systems, called virtual rigid link
coordinates.

On the other hand, when a distributed parameter system is forced
at one point and its response is measured at another point, the system
is said to be noncollocated. Cannon and Schmitz [3] have utilized
a noncollocated controller to actively control both the rigid-body
angle and the vibration of the flexible system. To avoid nonminimum
phase dynamics, other researchers [6], [9] have considered the
tracking point that is shifted from the end point to a point where
the internal stability is preserved. Therefore, in these results, even
if the desired tracking is realized at the tracking point, there is
always a possibility that the error is caused at the end point.
Acceleration feedback has been used by Kotniket al. [5] and the
work has been compared with the more conventional end point
position feedback. Eisleret al. [4] have presented a more complicated
recursive quadratic programming, coupled with a homotopy method,
to generate approximate minimum time and minimum tracking-
error tip trajectories for two-link flexible manipulator movements in
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