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of narrow field of view. It is shown that, if no exterospecific assumption about relative
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so far assume a narrow field of view (propriospecific) constraint to estimate time to collision
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work is to use elementary tools from differential geometry so as to relax such a constraint,
and obtain a closed form solution to both the planar and spherical expressions of time to
collision. It is also found that a limit for the narrow field of view constraint and scaled depth
computation is forty degrees. A solution to the specific case of radial imaging geometry is
finally derived, which provides an insight into the computational advantages of using polar
and log-polar sensors to compute time to collision.
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Abstract

In this paper, the problem of estimating time to collision from local (dense or sparse)
motion field measurements using an arbitrarily wide field of view and without imposing
constraints on either relative motion or surface orientation is addressed. Two different
definitions of wide field of view time to collision are provided, referring respectively to a
planar and spherical sensor geometry, and both reducing to scaled depth in the special case
of narrow field of view. It is shown that, if no exterospecific assumption about relative
motion or surface orientation can be made, then virtually all literature approaches proposed
so far assume a narrow field of view (propriospecific) constraint to estimate time to collision
from local measurements of first-order motion field structure. The main contribution of this
work is to use elementary tools from differential geometry so as to relax such a constraint,
and obtain a closed form solution to both the planar and spherical expressions of time to
collision. It is also found that a limit for the narrow field of view constraint and scaled depth
computation is forty degrees. A solution to the specific case of radial imaging geometry is
finally derived, which provides an insight into the computational advantages of using polar

and log-polar sensors to compute time to collision.

1 Introduction

In the last few decades, the motion field analysis of time-varying image sequences has proved
to be a powerful tool for the extraction of both geometric and kinematic information about
a viewed scene [2], [38], [36], [14]. Specifically, it has been shown that most part of such
visual information is embedded in the first-order local structure of motion fields, or motion
parallax [17], [15], [7]. Although not sufficient to solve completely the structure from motion
problem by means of local image observations [22], [40], motion parallax has been succesfully
applied in computer vision to address difficult problems and applications such as image seg-
mentation [5], [7], visual surveillance, robot navigation and obstacle avoidance [30], [34] and
robot visuo-motor control [8], [9]. Quite recently, evidence has been presented that also the
human visual system has specific sensitivities to motion parallax characteristic patterns such as
dilatation and shear [31], thus supporting the idea that first-order motion fields play a crucial
role in the execution of tasks such as visual exploration and heading direction control [13].
Having a wide field of view (FOV) is no doubt useful both to the biological and to the

artificial observer, as a means of controlling the largest possible part of the visual environment:



this is the reason why most animals have a remarkably wide (up to nearly 360 degrees) FOV.
In particular, motion information from the far sensor periphery can be used by an observer
to redirect gaze to interesting regions of the environment, and to point out the presence of
moving obstacles. The recent advances in hardware technology make it feasible to use a wider
FOV than in the past at the same image resolution. Beside being widely present in nature,
space-variant sensors are also particularly suited to computer vision applications allowing to
have, at the cost of some loss of resolution in the image periphery, a wider field of view than
traditional cameras for a fixed amount of image computation [32]. Yet, the wider is the camera
FOV, the larger is, as compared to the corresponding image in a human retina, the distortion
in the image periphery due to perspective effects [11]. In fact, while the photoreceptors in the
human eye can be assumed to be arranged according to a roughly spherical layout, the surface
of projection of electronic imaging sensors has — as the most part of the surfaces created by
human technology, such as walls, tables, paintings etc. — a planar shape. Leonardo da Vinci
was among the first to point out the lack of likelihood produced by perspective in frescos of
large dimensions as compared to what he called natural perspective [16].

Several theories on visual motion analysis have been developed for an ideal spherical sensor
as representing the whole “optic array” of visual directions [13], [27], [18], [29]. Indeed, a
spherical sensor model strongly appeals to theorists of both human and computer vision,
since natural perspective is biologically plausible and also greatly simplifies mathematical
expressions. Several computer vision approaches exist which use spherical theories for planar
implementations. The assumption of a spherical eye is — very often only implicitly — made
by limiting the visual analysis about the optical axis of perspective projection, thus assuming a
narrow FOV to ensure that, locally, the image plane closely approximates the image sphere [22],
[35]. Using a wide FOV would lead, in these cases, to gross visual parameters estimation errors
especially in the far image periphery.

This paper describes a method for computing time to collision from a planar motion field
with an arbitrarily wide FOV, in the presence of general rigid motion and surface orientation.
In Section 2.2 it is shown that, about the optical axis, time to collision — i.e., informally, the
time before the collision between the observer and the observed object — can be effectively
confused with scaled depth and estimated from local motion field observations around the
image origin. Yet, at larger visual angles, a natural definition of time to collision should
include both the translational and rotational components of rigid motion and, as a result,
time to collision and scaled depth do differ from one another. Two distinct definitions of time
to collision for an arbitrarily wide FOV are provided, including scaled depth as a particular
case (narrow FOV), and referring respectively to a planar and spherical sensor geometry.

A comparison of the most popular constraints used for estimating scaled depth from local
observations, carried out in Section 3.2 using a uniform notational framework to describe the
first-order motion field structure, shows that virtually all approaches estimate time to collision
from a linear combination of motion field invariants. How these invariants are distorted by
perspective at large visual angles, and how to recover the invariants corresponding to natural
projection in a closed form by projecting — by the use of elementary tools from differential
geometry — the planar motion field structure onto the sphere is the subject of Section 4.1.

Finally, Section 4.2 offers a discussion of the results, addressing (i) the question of up to



which FOV scaled depth and time to collision can be used interchangeably, (7i) aspects related
to the algorithmic implementation of the closed form result and to the difference between
the two most common field structure representations, and (7ii) which are the computational
advantages intrinsic to polar and log-polar sensor geometry. The Appendices provide math-
ematical details about (4) how the first-order structure of a field can be characterized using
either the topological or the tensor calculus approach, and (B) how to compute the planar

motion field invariants using polar and log-polar sensors.
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Figure 1: Image projection and relative motion. For the sake of simplicity, the plane common
to all velocity vectors is assumed equal to the plane of the figure, which contains the optical

axis and the visual ray.

2 Time to Collision Revisited

2.1 Preliminaries and Notation

Let the imaged scene be composed of rigid surfaces in relative motion w.r.t. the camera.
Geometry of image projection and camera-surface relative kinematics are illustrated in Fig. 1.
A perspective projection model with camera frame {O¢jk} is assumed, with O the center

of projection and k the depth axis. The image projection p = x4+ 1y j + k of a visible surface



point in space P = X1+ Yj + Zk is defined by

p:? (1)

where, without loss of generality, focal length is set to 1. The relative velocity at P can be
expressed as
P=V+QxP |, (2)

where (V, ) is the surface-camera relative twist screw, x denotes the usual vector product,
and rotation is conventionally referred to an axis passing through O. As P moves in space,

its projection p also moves in the image plane, giving rise to a planar motion field

p:kx[<%+ﬂxp>xp (3)

whose component along k is identically zero: p = u¢ + vj. The unit vector

r=x (4)

can be interpreted both as the direction of the visual ray through P and as the central
projection of P onto the unit sphere (natural perspective). A new reference frame {Otsr}
obtained by rotation of the camera frame is associated to each point of the sphere. As P

changes, a spherical motion field 7 = u't +v's s.t.

r=7rx

(%—i—ﬂxr)xr] (5)

is obtained in the plane tangent to the unit sphere at . The planar and spherical motion
fields are clearly identical at the image origin p = k, where the image plane is tangent to the
unit sphere and the optical and visual rays are parallel: » = k. The fields become more and
more dissimilar as the angle J(r) = arccos(k-r) between the two rays increases moving from
image origin towards image periphery. The camera’s field of view FOV € [0, 7] is defined as

twice the maximum angle between the optical and visual rays

FOV =2 max Ir) (6)
as related to the actual focal length and physical dimensions of the imaging sensor.
Let v = [v-i v-J v-k|" and ¥ = [v-t v-s v-r]" be the coordinate-dependent repre-

sentations of a vector v: these are one-one related by ¥ = C o, where C is the orthogonal

matrix ) )
cosdcosp —sing sind cosy
C=|[cosdsing cose sindsing . (7)
—sin? 0 cos v

Co-latitude ¥(r) and longitude ¢(r) angles are obtained directly from image data, as

[z y]" =tand[cosp sinp]" . (8)



2.2 Scaled Depth vs Time(s) to Collision

In the computer vision literature, the terms “time to collision” and “scaled depth” are used
interchangeably [3], [20], [33], and referred to the scalar field
Z
- 9
VE (9)
giving at each image location p the ratio between surface depth at P and the camera-surface

t, =

translational velocity component directed towards the image plane (a positive quantity for
camera and surface getting closer one to the other).

A viewpoint expressed in this paper is that as eq. (9) only refers to translation and disre-
gards rotation, it provides an exact definition of scaled depth, while it cannot be considered but
an approzimation of time to collision. This makes the task of recovering scaled depth more
difficult than determining time to collision, as we prove below. Indeed, recovering scaled depth
is tantamount to solving completely the structure from motion problem since, as evident from
eq. (3), structure (expressed as a depth) and relative translation can only be recovered from
the motion field up to a common scale factor — the well known speed-scale ambiguity [6], [4].
Two major difficulties arise in the structure from motion problem: (i) the segmentation of the
image in a set of regions corresponding to single rigid surfaces in the scene [1]; (7i) the recovery
of rigid motion for each surface, by separating the translational and rotational parts [22], [14].

Contrariwise, being it quite natural to define time to collision as a scalar field indicating
the time for each surface point to meet the observer, and since the velocity of a surface point
is due to both rigid translation and rotation, there should be actually no need for separating
rotation from translation — point (i) above — to obtain time to collision. Better still, rather
than requiring a segmentation step — point (i) above —, time to collision should be of help
as a powerful source of information to carry out the segmentation task needed to address the
structure from motion problem.

Several authors (e.g. [28], [10]) have recently argued against attempting to measure scaled
depth without solving explicitly for rigid motion. However, this can be done within a certain
degree of approximation provided that some constraints are put on relative motion and/or

viewing angle (see Section 3.2).

There are, of course, diverse possible definitions of time to collision matching the above
criteria, each referring to a precise operating context, application and geometry of the observer.
A reference framework of application is mobile robotics, where time to collision can be used
to carry out free space exploration, obstacle detection and surveillance. In the following, they
will be stated two definitions of time to collision, which rely on two different observer models:

the planar and the spherical observer.

Definition 1 (Planar Time to Collision) The Planar Time to Collision is the time t, it
would take a point P to reach the camera plane by traveling at a uniform velocity P(—k) k,
i.e.,
Z
ty=—— . 10
=3 (10
The concept of planar observer directly refers to the perspective model of imaging projection,

with its privileged direction in space (the optical axis) providing the normal to the surface
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Figure 2: Geometry for the definition of planar and central time to collision.

of collision (the camera plane). Since the actual imaging sensors’ dimensions are quite small,
collision with the (infinite) camera plane has more the nature of a virtual event than that of
a physical event (see also Fig. 2). Yet, in a robotic application planar time to collision could
be appropriate in the case of a robot with dominant transversal dimensions.

Eq. (10) is the natural extension of eq. (9) to the general case of relative rototranslation.
The rotational component of relative velocity comes into play anywhere far from image origin

¥ = 0, thus differentiating ¢, from scaled depth as the denominator
Pk=V-k—RsindQ-s , (11)

where sin s = k x 7, is no longer constant over the rigid surface. Using eqs. (9), (10) and
(11), the mismatch between scaled depth and planar time to collision can be expressed in
terms of their reciprocals as

tol -t =tany Qs | (12)

where Z = R cos). Ideally, the mismatch is zero if Q vanishes identically (pure translation)
or is coplanar with k and r, or in any case at the image origin. In practice, planar time to
collision approximates scaled depth in the case of dominant translation |V|| > ||R€] or,
when nothing can be said about €2, when the FOV is sufficiently small to assume that rotation

is uneffective.

Definition 2 (Central Time to Collision) The Central (or Spherical) Time to Collision
is the time t, it would take a point P to reach the camera center by traveling at a uniform
velocity P-(—r)r, i.e.,

fy= (13)



To the spherical observer using the natural perspective projection of eq. (4), all visual directions
look alike. Eq. (13) provides a convenient way of defining time to collision having a sphere
as the imaging surface (see again Fig. 2). Such a definition has a strict relationship with the
time to flight used with sonar-based systems [19], and is best suited to robotic applications
involving a robot with no dominant dimensions. A slight change to eq. (13) could be made to
define time to collision w.r.t. the minimum enclosing sphere around the robot. Notice that,
differently from the planar time to collision, %, is apparently not affected by relative rotation,
as P-r=V.r. However, this term is not a constant, as it depends on the direction of
the visual ray, and when we try to express it in a ray-independent fashion using the camera

reference frame, rotation reappears:
Pr=secVP-k+tandV-t+ R tand Q-s , (14)

where t = s x r. As a result, as with ¢,, ¢, cannot be considered as a scaled depth (or, better
still, a scaled range, R being used as depth): its mismatch with scaled depth evaluates as
V-t

—t;1 = —tany — (15)

-1
t P R

T

and, assuming that nothing is known about V, is approximately zero in the case of a narrow
FOV.

O

Egs. (10) and (13) offer a generalization to the time to collision of eq. (9) given an arbitrary
motion and field of view. Specifically, all three equations become identical in the degenerate
case FOV = 9 = 0. Section 3.2 investigates on the operating conditions under which scaled
depth and time to collision can be (albeit approximately) confused with one another — a
quantitative result being also derived at Section 4.2. This will prepare for our main result
of Section 4.1, explaining how to get an estimate of both the planar and spherical time to

collision without making any assumption on the FOV.

3 Scaled Depth Approximations

3.1 Computational Framework

Our computational framework assumes that the planar motion field and its first spatial deriva-
tives are available at a given number of image points. Such local measurements can be either
dense (e.g., the result of an optic flow image sequence analysis [2], [24] or sparse (as resulting
from the tracking of point, line or curve features from frame to frame [8], [23]) in the image.
A dense field allows to obtain a dense scaled depth map and also to perform segmentation [7],
[5]; yet, it is often computationally more expensive and less robust than a sparse field.

Since our main task is to get a reasonable estimate of time to collision without solving
for motion and scene structure, it is not required that a segmentation step be performed so
as to associate each single measurement to a specific world surface. For the same reason, our
framework is limited to using spatial derivatives of the field up to the first order. Indeed,

theoretically speaking, a precise estimate of time to collision (together with an estimate of



motion and structure) can be derived using a second-order motion field [18], [22], [40]. However,
in practice, second spatial derivatives of image motion (corresponding to third spatial derivative
of image intensity!) are quite difficult to compute in a robust fashion, and also require a support
image neighborhood so large that it is likely to cross the boundaries of discontinuity between
any two different imaged surfaces, thus proving grossly inaccurate time to collision estimates

at most of the evaluation points.

First-Order Planar Motion Field. Using the coordinate-dependent vector notation in-
troduced in Section 2.1, the planar motion field of eq. (3) is expressable as a function of image

position p as

z

lu(x,y)] 1[1 0 —x] v+[_(—xy (1+2%) —y a . (16)

v(z,y) - 0 1 —y 1—|—y2) Ty T

with z(z,y) s.t. 2(X/Z2,Y/Z) = Z.
The motion field can be approximated, in a convenient neighborhood of an image point p,
by the motion field vector at p and the first-order field local spatial structure, encoded in the

four differential invariants divergence, curl, and (two components of) deformation
div=wuy+uvy ; curl=—uy+uv, ; defx=u, —vy ; defy=uy,+v, , (17)

where subscripts denote partial differentiation (see Appendix A). The differential invari-
ants of the planar motion field at p can be compactly represented through the 4x1 matrix
D = [div curl defx defy]”: they depend on image position, visible surface depth and orien-
tation, and relative twist screw. Surface depth and orientation are related to the parameters
characterizing the first-order differential structure of the visual surface in the neighborhood
of point P (the tangent plane at P): these are the depth gradient components p = 0Z/0X
and ¢ = 0Z/9Y, and the intercept ¢ = z (1 — px — qy) with the optical axis. The gradient
components can be expressed in terms of the slant o € [0,7/2] and tilt 7 € [0,27] angles of
the tangent plane, as

5 " (18)

[p q]' = —tano[cosT sinT

being m = —pi — ¢j + k a vector normal to the surface at P. Observing that d(z 1)/0z =
—p/c and d(z7") /0y = —q/c, we get from eqs. (16) and (17)

D:Hv(xayapaqac)v+nﬂ(xay)ﬁ ) (19)
where
—p —q —24+3pzxr+3qy -3y 3x O
q -p —qr+py T y 2
Iy (z,y;p,q,¢)=¢ ;o Ig(z,y)= (20)
-p q PT—qy Yy x 0
—q —p qr+py -z y 0

3.2 Analysis of Constraints for Scaled Depth

This Section is devoted to analyze in some detail the most common assumptions used in

the recent literature to estimate time to collision as a scaled depth from local observations.



Since several approaches are discussed, a uniform notation based on first-order motion field
invariants has been devised so as to facilitate comparisons.

Let us introduce the directional deformation (in the image plane direction o) as the quantity
def® = cos 2a defx + sin 2a defy = defcos(2u — 2a) (21)

being defx = defcos2u and defy = defsin2u. The quantity def = def# > 0, usually referred
to as deformation, is — together with div and curl — a scalar invariant, as it does not change
if image coordinates are rotated (see Appendix A).

A general expression for scaled depth at a generic image point is obtained from eq. (19) in

terms of directional deformations:

iv — def], — fey
t;lzdw de; 3 defq . (22)

In eq. (22), def, and def,, are due respectively to the translational (V') and rotational (£2)
components of relative rigid motion, being def® = defy} + defs. We observe from eq. (20)
that the rotation-related deformation depends only on €2 and image coordinates, vanishing
in the case of pure translation or, whichever €2, at the image origin. The translation-related
deformation depends instead on V' /Z and [p ¢]", vanishing identically either if | V|| = 0 or if
the tangent plane at P and the image plane are mutually parallel (p=¢=0).

As mentioned earlier, any attempt to recover scaled depth from local motion field computa-
tions must rely on some simplifying assumption about surface-camera relative motion and/or
viewing angle. In the following, the popular narrow field of view [30], [35], [8], [34], dominant

translation [7], [5], [12] and frontoparallel surface [34], [37] constraints are discussed.

Narrow Field of View. The narrow field of view constraint limits the range of visual
directions to a small visual angle around the optical axis, for which it is assumed that no

significant deformations exist in the first-order motion field structure, i.e.,

Dx~D, |, (23)
where D, = [div, curl, defx, defy,]" is the matrix of motion field invariants at the image
origin. Recalling eq. (19), we have:

D, = HV(an;poaQOaco)v+HQ(an)ﬁ . (24)

From egs. (18) through (21) we see that, at the origin, 2, = 1)+7,, where ¢ = arctan(V -5 /V -1)
is the angle between the translational velocity component parallel to the image plane and the

z-axis. We also have, from eq. (22),

div, — def™

-1
tZ,O = 2 ?

(25)

where from eq. (21) it follows that def]° = def, cos(¢) — 7,). Assuming that the orientation of
the visible surface at p is unknown, a bound on scaled depth is obtained

L1 div, + def,

z,0 9 I

(26)



reflecting the fact that the difference between surface tilt and direction of relative transla-
tion parallel to the image is, differently from their sum, undecidable if only local first-order
information is available [35], [8].

The bound of eq. (26) generalizes the directional divergence algorithm, proposed earlier
in [30], based on an iterative search and exploiting the invariant properties of the divergence
to image coordinate rotations. According to such an algorithm, an approaching motion can
be detected, and its scaled depth estimated, by iteratively searching, if it exists, for the image
plane direction ¢, s.t. the directional divergence operator divy = cos? puy + sin2¢vy +
sin ¢ cos ¢ [uy + v,] is maximum and positive. Since it is easy to show that
div + def?

2
it is clear that the directional divergence algorithm consists basically in progressively rotating

divy = (27)

the image coordinate frame in eq. (25) until finding the value of ¢ by which maxg(div+def ) =
div + def > 0, thus being equivalent to using only the upper bound in eq. (26). Notice that,
if a positive maximum exists, then it is attained of course when the directional deformation
is maximum and equal to the deformation, i.e. at ¢, = (= po): such an angle can be
computed in a noniterative fashion from the two deformation components defx and defy.
Several variations to the basic bound of eq. (26) have been proposed so far, attempting to
overcome the orientation ambiguity by coupling the narrow FOV constraint of eq. (23) with

additional contraints such as fixation, partial knowledge of motion, etc. [8], [37].

Dominant Translation. In the case of dominant translation it is assumed that rotation be

negligible w.r.t. translation, i.e. defy = 0 so that def,, = def. As a result, eq. (22) reduces to

1 div — def” ’ (28)
2
thus allowing to bound scaled depth at any image point as
1 div:2|:def (29)

if the surface orientation 7 is unknown. Besides, as mentioned before in the case of pure
translation the structure from motion problem is greatly simplified, being it easy to estimate
the epipole p, = V /(V- k) and thus to recover scaled depth exactly [22], [6], [20]. As a special
case, we consider now estimating scaled depth at the epipole [7], [12]: as easily seen from
eq. (3), this is the unique image point at which the motion field annihilates (singular point)
when © = 0. A rapid inspection to eq. (20) allows us to check that at the epipole the curl and
deformation terms vanish identically whichever the surface orientation: curl = defx = defy = 0.

Hence, being

N 1 div + defx —c‘url + defy (30)

2 [ curl + defy  div — defx
the Jacobian matrix describing the linear part of the motion field — see also Appendix A —,
under dominant translation scaled depth at the epipole can be computed from
div,
2

where the latter equality arises from matrix M of eq. (30) being at the epipole a multiple of

the identity.

toe= =X (31)

10



Frontoparallel Surface. A very special case is that of a frontoparallel surface, i.e. when at
some image point p a vanishing depth gradient occurs: p = ¢ = 0. At such a point, the narrow
FOV constraint can be relaxed, and scaled depth can be computed exactly whichever the value
of ¥. With the help of eq. (20) it is possible to verify that in the frontoparallel condition it
holds def,, = 0 and, by consequence, def, = def, so that

_ div — 3 def?

= (32)
This is exactly the formula proposed in [37] to compute scaled depth using polar (p, ) and
log-polar (£,7) coordinates:

- AN % 0
t1:2<—+—>——:§lna——+2— 33
‘ p Op) Op o Iy (33)
(for a proof, see Appendix B). It is worth noting that, although the frontoparallel surface
constraint is a very powerful one (allowing to compute scaled depth without using bounds,
and above all even with a wide FOV), yet it is also a very strong one, so that it is likely to

produce large systematic errors in practical applications.

4 Estimating Time to Collision

4.1 Time to Collision with a Wide Field of View

From the previous Section it appears that the stronger the operational constraints are, the
easier is the scaled depth estimation process, and the higher the probability of gross systematic
errors when the constraints fail to be met perfectly.

As already evident from Section 2.2, in the presence of a narrow FOV scaled depth, planar

and central time to collision are approximately equal:
=ty =1, if sind <1 , (34)

being t, =t, = t, at the image origin. Among the constraints used to compute time to collision
from local observations discussed before, only the narrow FOV constraint applies to conditions
related to the viewer’s conditions only. It is clear that only such kind of propriospecific con-
straints should be used when nothing can be said about camera-scene relative geometry and
motion (ezterospecific conditions). As this is the most general case, in the following we will
not be making any assumption on relative motion or surface orientation, while we will show
how to relax the narrow FOV constraint and obtain estimates of planar and central time to
collision which apply at any co-latitude.

Let us begin with the following result, establishing a correspondence between planar and

spherical motion fields in terms of field vectors and first-order structures.

Theorem 1 (Connection of Planar and Spherical Motion Fields) The planar and

spherical motion fields are one-one related by

[ v']"=H[u v]" (35)
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where

o [cos%? 0 ] l cosp  singp (36)

N 0 cos

—siny cos
The first-order structures of the two fields, encoded in the Jacobian matrices M and M’, are

one-one related by

M'=HMH !'4+K' |, (37)
where

, 2u’ 0

K'= —tand o (38)
Proof:

Combining egs. (1) and (4), and recalling that Z = R cos 1), we obtain
r=cosdp . (39)

Substituting this into eq. (5), by direct comparison with eq. (3) we get # x r = cos? 9 p x p.
Eq. (35) is finally obtained by expressing all vectors in the same coordinates.

To prove the second part of the result, we look for the relationship between the matrices
D and D’, encoding the spherical and planar first-order motion field structures at r and p,
respectively. Let us refer to the plane tangent to the unit sphere at r as the image plane of a
virtual camera with optical axis r: an equation similar to eq. (24) can then be written at the

origin of the virtual image plane. Explicitly:
D' =%,(p,¢,R)V +2,Q , (40)

where Xy (p'. ¢, R) = T1,(0,0;p', ¢', R) and ¥, = 14(0,0). Eq. (40) was first introduced in a
different form in [18]. The values p' and ¢’ are the visible surface orientation parameters at P

as measured from the virtual camera:

Hig o
q n-r n-s

Let us now observe that the point on the unit (hemi-)sphere r can be thought of as the

virtual perspective projection of p according to eq. (39), which is nothing but another way to
express natural perspective. A basic result from differential geometry states that, if a smooth
map exists between two manifolds — in our case, the manifolds are the image plane and the
unit sphere, and the map is natural perspective —, then the tangent space at corresponding
points in the two manifolds are related by the derivative of the same map, which is always a
linear map [25]. As the planar and spherical motion fields belong respectively to the tangent
space at p (the camera plane) and r (the virtual camera plane), we are allowed to express the

relationship between the two differential invariant sets as a linear map of the kind
D'=AD+B,V+B,Q , (42)

with A and the B’s some 4x4 and 4x3 matrices, respectively, depending exclusively on the
relative orientation (¢, @) between the planar and spherical frames. Using eqs. (19) and (40),

and taking into account that eq. (42) must hold whichever the rigid motion, we obtain

Zv(plaqlaR) :AHV(Q:ay;paqac)C_FBV ; ZQ:AHQ(may)C—i_BQ 9 (43)
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which can be used to solve for A, B, and B,. After some algebraic manipulation we finally

come up with

1 0 0 0
0 —ngy sin2 cos 2
A= my Ty S 2 "7‘19. ' (44)
0 O cos 2¢p sin 2¢
0 ny —mysin2¢ mycos2p
and
By V +BoQ = —tand[3u' o' o '] (45)
with
my = % (sec19 + cos 19) 7 ng = % (sec19 — COS 19) . (46)

The final result of eq. (37) easily follows by rewriting eq. (42) in the matrix form of eq. (30).

O

The result above allows us to project the planar motion field and its first-order structure
onto the unit sphere. This is essential to computing the planar and central time to collision

with a wide field of view, as we show below.

Theorem 2 (Bounds on Wide FOV Time to Collision) The central time to collision
is bounded, at any co-latitude angle 9, by the divergence and the deformation of the spherical

motion field, i.e.,

L) :l: fl
41— div’' £ de ’ (47)
2
where
div' = div — 3tand u’ (48)
and
) 9711/2
def’ = |(def? — tandu')” + (m,g def?*™/4 4 ny curl — tanﬁv') } . (49)

The planar time to collision can be obtained at any co-latitude from the knowledge of the central

time to collision and of the spherical motion field component along t, i.e.,

tol =t +tandu . (50)
Proof:
We prove the second part of the result first. Subtracting eq. (15) from eq. (12) we obtain
_ _ Vi
t,t —t, ! =tany [?Jrﬂ-s} : (51)

Recalling that u' = 7t and using eq. (5), eq. (50) follows.

That ¢, can be estimated as in eq. (47) is easily proved using the concept of virtual camera
introduced earlier. Notice first that eq. (47) has the same form of eq. (26), which holds at the
image origin p = k where t, = t,. Indeed, eq. (47) refers to the image origin p = r of the
virtual camera having r as optical axis, thus including eq. (26) as the special case r = k. The
invariants appearing in eq. (47) are those of the spherical motion field: these coincide with
the planar invariants at the image origin. A close look to eqs. (44) and (45) confirms this last

fact, since at the image origin (¢ = ¢ = 0) matrix A is the identity and the B’s are zero.
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The results of this Section also clarify why, as anticipated in Section 2.2, scaled depth
cannot be estimated simply as a combination of first-order invariants of either the planar or
the spherical motion field. Referring again to eq. (22), we notice in fact that, although the
bound on the sum

def] + defy = def'” + tand o/ (52)

allows to express eq. (22) in terms of only one of def] and defy, it is not possible to obtain
a similar bound for their difference. As a result, the two directional divergencies in eq. (22)

cannot be individually bounded: to do that, translation and rotation should be decoupled.

4.2 Discussion of Results

Computer Simulation. A simulation environment provided with an XWindow graphic
interface was developed to test the feasibility of time to collision approaches and constraints
under a wide range of operating conditions, such as relative motion, surface orientation, and
field of view.

Figs. 3 (a)-(d) illustrate the results for the case of a planar visible surface rototranslating
rigidly w.r.t. the camera. The axis of rotation passes through point @ = ck in space, with
¢ = 100 flu (focal length units). As a result, relative translation is partially due to rotation:
V=T-QxQ, beingT = —10k flu- frames ' the translation of the axis of rotation, and
Q =54 deg- frames !. The planar surface has an orientation of ¢ = 45 deg and 7 = 60 deg
at each of its points. The reciprocal of the time to collision value (often referred to as collision
immediacy, frames_l) is plotted as a function of the co-latitude angle ¥ spanning half of the
overall visual field (FOV = 160 deg) in the image direction ¢ = 0.

Fig. 3 (a) reports collision immediacies as defined in eqs. (9), (10) and (13) respectively. It
appears that these three quantities are approximately equal only for small values of ¥}, becoming
significantly different for FOV of 40 degrees or larger: hence, this is a validity range for the
narrow FOV constraint. Fig. 3 (b) confirms in fact that scaled depth is well approximated
using eq. (23) plus eq. (26) at co-latitudes no larger than 20 deg. Notice that as the narrow
FOV fails to be met, the true scalar depth value goes out of the bounds. Conversely, Figs. 3
(c),(d) show that the true values of the central and planar time to collision always remains
inside the bounds obtained in eqs. (47) and (50) respectively. Specifically, there is a value of 9
at which the spherical deformation vanishes, so that the bounds and the true value are equal:
at that value the bounds have a discontinuity, since the derivative of the spherical deformation

changes its sign.

Mapping Planar Fields onto the Unit Sphere: Geometric Deformations. As shown
in Section 4.1, the result of Theorem 1 can be used in Theorem 2 to compute time to collision
directly from the planar motion field and its invariants as a linear combination of spherical
motion field invariants. Such a closed form formulation has a clear computational advantage
over the corresponding algorithmic formulation, i.e. first remapping the planar field onto the
unit sphere using eq. (35), and then obtaining the spherical invariants by direct differentiation
of the spherical field with the analogous of eq. (17). Indeed, apart from being impractical,
using the algorithmic formulation could even be impossible, as it happens when only a sparse

planar field is available. A delicate point concerning spherical field differentiation is related to
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(a) Times to Collision (b) Scaled Depth
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Figure 3: Times to collision and their estimates.

the geometric distortion of the neighborhood of support for the computation of derivatives. In
fact, not only the motion field in the neighborhood {p,, : |z, — 2| < €z; |yn — y| < €} of an
image point p is deformed when passing from the plane to the sphere, but the neighborhood
itself undergoes the deformation governed by eq. (35), since it can obviously be regarded as
the particular motion field [z, — = y, — y]* with M as the identity matrix. In conclusion,
both the motion field and its support neighborhood must be projected onto the sphere, where
for field differentiation the nonregular sampling of the support must be taken into account.
The planar motion field deformation can be better investigated in terms of eq. (37), de-
scribing the mapping which transforms the planar field structure into the spherical one. In the
general case, both the eigenvalues and eigenvectors of the matrices M and M’ will differ. At a
singular point p s.t. p = 0 though, K’ vanishes identically, and M and M’ have the same eigen-
values, since the mapping is a similarity transform. This result is in accordance with the claim
that singular points carry topological information about the motion field which is invariant on
imaging sensor shape [39]. However, the similarity mapping does not preserve the eigenvec-
tors of M, which are nonlinearly deformed due to the multiplication with the nonorthogonal
matrix H. Eq. (63) of Appendix A, together with the above observation, provides an insight
into the relationship between the geometric deformation of the planar motion field and the
way the motion field invariants change after projection onto the sphere. Specifically, a change
in the angle 3 between the eigenvectors has to be expected, as a consequence of the fact that

perspective projection does not preserve angles [26]: indeed, it holds

curl
= 53
cos 3 o (53)
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As clear from eq. (43), at a singular point the divergence — which is equal to the sum of the
eigenvalues of M, see Appendix A — is also an invariant of the mapping: this is the reason

why it does not appear in eq. (53).
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Figure 4: Projection onto a spherical motion field of pure deformation at a singular point.
Notice the geometric distortion of both the field and the neighborhood (see text).

Figs. 4 (a)-(d) show four planar fields producing, in the neighborhood of singular points
located at different ¥ angles (0, 15, 30 and 45 deg respectively) along the ¢ = 0 direction the
same spherical field of pure deformation. We can think of obtaining these fields by making the
deformation field of Fig. 4 (a) to “slide” on the spherical surface along the meridian ¢ = 0,
each time backprojecting it onto the image plane by inverting eq. (35). The spherical field is
characterized by a traceless symmetric M’ and orthogonal eigenvectors (the axes of expansion
and contraction, respectively), rotated in the sphere tangent plane by an angle p/ = 7/4. It
is evident that all the fields have the same topological characterization (a saddle). However,
as 1 increases, a curl component arises, and the angle between the asymptotic directions
(i.e., the eigenvectors) of the planar field decreases. Using eq. (37) together with eq. (53),
it is not difficult to show that such an angle depends both on ¥ and p' as cosB(J, ') =
[n2/(m2 + cot?2u')]'/2, where my and ny are defined in eq. (46).

To summarize, there is a strict relationship between the geometric deformation induced by
the projection of the planar field onto the sphere and the quantitative changes of the motion
field invariants. At singular points, while qualitative field structure information as encoded
in the eigenvalues of M is unchanged, all motion field invariants but divergence undergo a

quantitative change. Therefore, the local field structure representation in terms of the eigen-
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values of M is more stable than the one based on motion field invariants. This encourages
the use of eigenvalues rather than invariants to the purpose of doing motion field based image

segmentation.

Computational Advantages in the Polar and Log-Polar Planes. A last remark is
devoted to the use of polar and log-polar imaging sensors for time to collision estimation. Such
sensors are provided with a radial disposition of photosensitive elements, instead than the usual
z-y organization of conventional cameras. Specifically, in the log-polar case the ratio between
consecutive radii is equal to a constant a > 1, so that log-polar pixels grow exponentially
in size as the radial coordinate increases from the uniform resolution fovea towards sensor
periphery [32]. As a result, while in traditional cameras the tangent of the field of view angle
grows only linearly with sensor dimensions, in a log-polar sensor such growth is exponential,
and a trade-off exists between image resolution and FOV width for a fixed number of sensor
pixels.

It is thus clear that using a log-polar sensor to estimate time to collision proves particularly
convenient whenever a wide FOV has to be monitored, and a dense time to collision map has
to be computed (these are very common requirements in robot vision). In [37] it is claimed
that radial sensors have further specific advantages over traditional cameras, namely, that time
to collision can be computed for an arbitrarily large FOV. Yet, as shown in Section 3.2, this is
not due to intrinsic advantages of radial sensors (which, basically, offer a new representation
of the same image content through a change of coordinates) but to the very strong assumption
that the surface be frontoparallel at each imaged point.

However, thanks to their polar organization of image information, both polar and log-
polar sensors do have a computational advantage over traditional sensors in the wide FOV
computation scheme presented in this paper. The advantage is related to the fact that the
spherical field can be obtained from the radial representation of the corresponding planar field

without the need to rotate by ¢ the planar coordinate frame:

9p 109p _ ;
M — costd O 8@/} ki 2 secy O LK (54)
0 1 pa—ﬁ+¢ —£+% 0 1

N [cosﬁ 0] g—§+lnaé klnag—g—%] [secﬁ 0
= 1 8. . 8. .
0 1 —klnagz-—i-% %—l—lnaf 0 1

The result above is easily obtained by substituting the polar and log-polar representations of

]+K’ : (55)

the matrix M derived in Appendix B into eq. (37).
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A Motion Field Invariants: Tensor Calculus and Topological

Viewpoints

The properties of a matrix M which remain unaltered after a coordinate system rotation are
obtained with the two different viewpoints of tensor calculus and topology.

The tensor calculus viewpoint relies on the Chauchy-Schwartz decomposition theorem,
according to which any tensor (matrix) can be split into the sum of three elementary parts: a
multiple of the identity matrix, a traceless symmetric and an antisymmetric matrix [15]:

1 0 —1
+ — curl
1 0

1
M= = di
2140 2

1 411 0
+ ) def R, l 0 1 ]RM , (56)
where R, is the orthogonal matrix

R, — l cos‘,u sin ] ‘ (57)
—sinp  cosp

The three numbers div, curl and def are the scalar invariants of the decomposition, in that

they do not change after a rotation of the coordinate axes.
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The Jacobian matrix
Uy Uy
M = (58)

such that
[u(@n:yn) v(@n.yn)]" = [u(z,y) v(z,y) " + M2y — 2 yp —y]" (59)

encodes the first-order structure of a 2D vector field [u(z,y) v(z,y)]" at [z y]*. The first-
order field approximation is the sum of three elementary field components, a divergence, a
curl, and a deformation field, which correspond to simple field configurations. For a pure
divergence field, the integral curves — i.e., the curves tangent to the vector field at each point
— are straight lines, for a curl field they are circles, and for a deformation field they have two
orthogonal asymptotical directions, a direction of expansion and a direction of contraction.
The direction of the expansion axis forms an angle p with the z axis; as such, it does depend
on the current reference system. We can regard the deformation component as characterized
by a vector [defx defy]" = def[cos2u sin2u]", whose magnitude, def, does not depend on
the reference frame.

From the topological viewpoint, we qualitatively study the behavior of the field as a whole,
based on the matrix eigenvalues. It can be shown that a great number of different planar
vector fields can occur, according to the value of the real and the imaginary parts of the eigen-
values. These are referred to as “center,” “
node” [21].

A connection between the two viewpoints of course exists, and relies on the invariant

spiral,” “focus,” “node,” “saddle,” and “improper

properties of tr M (the trace) and det M (the determinant). The matrix eigenvalues A; and A,
(Re{A\1} > Re{X2}) are, indeed, the solutions of the characteristic equation

M —trMA+detM=0 . (60)

Since tr M = A1 + A2 and det M = A\q Ao, we have
M+X=div; A\ — Ay = Vdef? —curl® . (61)

Better still, it is easy to show that if A\ — Ao # 0 and if vy is the eigenvector relative to the
eigenvalue )\, such that
M’Uk :Akvk , (62)

then
div=XA+Xo; curl=—(\ — X)) cot B ; def= (N — X)) cscf (63)

where the angle § between the two eigenvectors, which is also independent of coordinate

rotations, is defined by
vy - V5

[oa] vzl

the asterisk denoting complex conjugate. The condition A\; —Ay # 0 ensures that matrix M have

cos = , (64)

exactly two eigenvectors, thus excluding the cases of a focus (M multiple of the identity matrix,

infinite eigenvectors) and of an improper node (M not diagonalizable, only one eigenvector).
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B Planar Field Invariants using Polar and Log-Polar Coordi-

nates

The scope of this Appendix is to find the expression of the planar motion field differential in-
variants div, curl, def? and def?*™/* after the polar (z,y) — (p = V22 + 42, p = arctan(y/z))
and log-polar (p,) — (£ = log, p — hy,y = k¢) — a, h and k real positive — coordinate
transformations. Let us begin with planar invariants in polar coordinates. We rewrite the
Jacobian matrix of eq. (58) as M = 0(u,v)/0(x,y), and express it using the chain rule for

partial derivatives as

(65)

The two right-hand matrices of eq. (65) evaluate as

8(p,go): 1 0 cos¢  sing (66)
0 p! —sing cosy

and

. -1 © .0 —©
a(u,v):[cow sing lM+[0 H (©7)

—singp  cosyp d(p, ©) 0 u®

)= =1 -

is the motion field in the polar plane. Since u§ = 9p/9p, ug, = pd(p/p)/0p, vy = pdp/dp+¢

respectively, where
cosp  singp

—sing cosy

and v = pdp/dp, we finally obtain

cosp  sing - gﬁ %%—gb cosp  singp (69)
| —sing cosg p8p+<p a—£+§ —sinp cosy

The middle factor in eq. (69) is clearly matrix M after an image coordinate rotation by . As
mentioned in Appendix A, a coordinate rotation does not change divergence and curl, but only
affects the deformation terms. Therefore, recalling the definition of directional deformation of

eq. (21), the result for polar coordinates is:

=0 ue — 9% 08 19 .
div = + + a(p curl _+2</Z+ P %p(p pl 3p (70)
— . ™ —
def? = 2L — 55 def? Pop T 585 -
A similar development can be used starting from the previous result, thus obtaining
Mo | 5% sing | g—é—i-lnaé klna—fh 1 cosg  sing (1)
| —sing cosg kllna 354—7 7+lna§ —sing cos
and eventually deriving the log-polar encoding of planar motion field invariants:
. L 9E | 9y . .
d1v:2lna§—i—8—§+£ ; curl = 21+klna 8§ klnaa—f; : )
. +r/4 _ _1
def? = & — 51 o def*™ /" = -Gl 4+ klna &
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