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Time to collision from first-order spherical image motion
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Abstract

In the absence of contraints on either object motion or surface slant, a narrow field of view constraint has to be assumed to
compute time to collision as a scaled depth from first-order image motion measurements. In this work, time to collision and
scaled depth are regarded as different visual entities, and it is shown that a bound for time to collision can always be computed
regardless of the field of view, thus extending the range of applicability of time to collision based techniques in areas such as
mobile robotics and visual surveillance. The method relies on computing in closed form the spherical motion field and the
associated parallax from image plane measurements obtained with either conventional cameras or space-variant sensors. An
experimental validation of the main theoretical results highlights the difference between time to collision and scaled depth,
and addresses a comparison of time to collision approaches using both dense and sparse motion estimates. © 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

In the last few decades, the analysis of monocu-
lar image sequences has proved a powerful tool for
the extraction of geometric and kinematic information
about a viewed scene (for a review, see, e.g., [20]). It is
well known that due to the so-called speed-scale am-
biguity, the “structure from motion” problem can only
be solved up to an unknown scale factor [12], so that
scene structure is usually expressed as ascaled depth.
Most of the visual motion information is embedded in
the first-order local structure of motion fields or mo-
tion parallax [11]. Evidence has been presented that
the human visual system has specific sensitivities to
motion parallax characteristic patterns such as dilation
and shear [14], thus supporting the idea that first-order
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motion fields play a crucial role in biological vision
for the execution of tasks such as visual exploration
and heading direction control [8]. The motion paral-
lax has been widely exploited in computer vision to
carry out a number of tasks (e.g., image segmentation
[1], robot navigation and obstacle avoidance [13], and
robot visuo-motor control [3]) which do not require
a full solution of the difficult structure from motion
problem. Specifically, it has been shown [17] that the
motion parallax embeds sufficient information for esti-
mating the temporal distance between the observer and
the observed object also known astime to collision.

Several theories on visual motion analysis have been
developed for an ideal spherical sensor with a 360◦
field of view (FOV), representing the whole optic array
of visual directions [11,12]. A wide FOV is no doubt
very useful to both the biological and the artificial ob-
server as a means of controlling the largest possible
part of the visual environment. The recent advances
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in hardware technology have made it possible to use
a wider FOV than in the past, typically combined
with the reduced image resolution of space-variant vi-
sual sensors [18]. Yet, in practical applications, the
assumption of a spherical eye is — often only im-
plicitly — made by limiting the visual analysis about
the optical axis of perspective projection, thus assum-
ing a narrow FOV to ensure that, locally, the image
plane closely approximates the image sphere [13,17].
Indeed, the wider is the FOV, the larger is, as com-
pared to the corresponding spherical image, the dis-
tortion in a planar image due to perspective effects;
this induces gross visual parameter estimation errors
especially in the image periphery. Leonardo da Vinci
was among the first to point out the visual distortions
produced by “artificial” perspective in frescos of large
dimensions as compared to the projection under “nat-
ural perspective” onto a human retina (a hemisphere)
[10].

This paper describes a method for computing time
to collision from local first-order approximations of
planar motion fields with an arbitrarily wide FOV in
the presence of general rigid motion and surface ori-
entation (full mathematical details and proofs of all
results can be found in [4]). After stating the compu-
tational framework (see Section 2), in Section 3 it is
shown that, about the optical axis, time to collision
can be effectively confused with scaled depth and es-
timated from local motion field observations around
the image origin. Yet, at larger visual angles, a natural
definition of time to collision should include both the
translational and rotational components of rigid mo-
tion, and as a result, time to collision and scaled depth
should be regarded as different visual entities. Section
4 provides two novel definitions of time to collision for
an arbitrarily wide FOV, referring, respectively, to a
planar and spherical sensor geometry, and converging
to scaled depth in the particular case of narrow FOV.
A closed-form solution using linear combinations of
planar motion parallax coefficients is obtained for the
two times to collision by applying elementary differ-
ential geometry and projecting the planar motion field
structure onto the unit sphere. In an experimental vali-
dation of the theoretical framework (Section 5), results
of tests featuring both dense (optical flow) and sparse
(active contours) affine motion estimates are presented
and discussed. Finally, in Section 6 conclusions are
drawn and future work is outlined.

2. Computational framework

2.1. Preliminaries and notation

Let the imaged scene be composed of rigid surfaces
in relative motion with respect to the camera. The
geometry of image projection is shown in Fig. 1. (For
the sake of simplicity, the figure illustrates the special
case in which the plane common to all velocity vectors
coincides with the plane defined by the visual ray and
the optical axis.) The camera frame is{OijkOijkOijk}, whereOOO
is the center of projection andkkk is the depth axis. The
perspective projectionppp = xiii + yjjj + kkk of a visible
surface point in spacePPP = Xiii + Yjjj + Zkkk is defined
by ppp = PPP/Z where, without loss of generality, focal
length is set to 1.

The relative velocity atPPP can be expressed asṖPP =
TTT +ΩΩΩ ∧ (PPP −QQQ), whereTTT is the translation,ΩΩΩ is the
rotation,∧ denotes the usual vector product and the
axis of rotation passes through an assigned world point
QQQ. The surface-camera relative twist screw is defined
as (VVV ,ΩΩΩ), whereVVV = TTT − ΩΩΩ ∧ QQQ and rotation is
conventionally referred to an axis passing throughOOO.
As PPP moves in space, its projectionppp also moves in
the image plane, giving rise to aplanar motion field

ṗpp = ṖPP − Żppp

Z
, (1)

whose component alongkkk is identically zero:ṗpp =
uiii + vjjj . The unit vectorrrr = PPP/R can be interpreted
both as the direction of the visual ray throughPPP and
as the central projection ofPPP onto the unit sphere
(natural perspective). A new reference frame{OtsrOtsrOtsr}
obtained by rotation of the camera frame is associated
to each point of the sphere. AsPPP changes, aspherical
motion fieldṙrr = u′ttt +v′sss is obtained in the plane tan-
gent to the unit sphere atrrr. The planar and spherical
motion fields are clearly identical at the planar image
origin ppp = kkk, where the image plane is tangent to the
unit sphere and the optical and visual rays are parallel:
rrr = kkk. The fields become more and more dissimilar
as the angleϑ between the two rays increases moving
from the image origin towards the periphery. The field
of view FOV ∈ [0, π ] is defined as twice the maxi-
mum attainableϑ as related to the actual focal length
and physical dimensions of the imaging sensor. For
any givenrrr, coordinate representations in the camera
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Fig. 1. Geometry of image projection onto camera plane (artificial perspective) and spherical optical array (natural perspective).

and spherical frames are related to each other by a
rotation matrix whose entries depend on co-latitude
ϑ and longitudeϕ. Specifically, pairs of image co-
ordinates and visual directions correspond one-to-one,
according to the transformation

[x y]T = tanϑ [ cosϕ sinϕ]T.

2.2. First-order planar motion field

The computational framework requires that the pla-
nar motion field and its first spatial derivatives be avail-
able at a given number of image points. Such local
measurements can either be dense (e.g., the result of
an optic flow image sequence analysis [2]) or sparse
(as resulting from the tracking of visual features from
frame to frame [3]) in the image. The planar motion
field ṗpp is expressible as a function of image position
[x y]T and depthZ. In particular, in a suitable neigh-
borhood ofppp, the motion field can be approximated as

[u(xn, yn) v(xn, yn)]
T

= [u(x, y)v(x, y)]T + M[xn − x yn − y]T,

where the Jacobian matrix

M = 1

2

{[
div 0

0 div

]
+

[
0 −rot

rot 0

]

+
[

defx defy

defy −defx

]}
(2)

evaluated at [x y]T encodes the first-order local spa-
tial structure of the planar field (motion parallax) in
the four numbers div, rot, defx and defy, referred to
respectively as divergence, curl, and (two components
of) deformation. Regarded as image transformations,
divergence accounts for isotropic expansions, curl for
rigid rotations, and deformation for a simultaneous ex-
pansion and compression along two orthogonal image
directions [11]. Concerning the projective properties,
the planar motion parallax depends on image posi-
tion, visible surface depth and orientation, and relative
twist screw [4]. In particular, the deformation vector
def = defxiii + defyjjj can be expressed as the sum of
two terms, taking into account respectively 3D trans-
lations and rotations:def = defV (ppp; ∇Z; Z;VVV ) +
defΩ(ppp;ΩΩΩ). The termdefΩ vanishes in the case of
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Table 1
Constraints for scaled depth approximation

Approximation Constraint Validity Formula Refs.

Narrow field of view ‖ppp‖ ≈ 1 Near image origin t−1
z = 1

2(div ± def) [13,17]

Dominant translation ‖ΩΩΩ‖ ≈ 0 Any image point t−1
z = 1

2(div ± def) [2,7]

Frontoparallel surface ‖∇Z‖ ≈ 0 Any image point t−1
z = 1

2(div − 3defϕ) [16,19]

pure translation (ΩΩΩ = 0) or, whateverΩΩΩ, at the image
origin (ppp = kkk), while defV vanishes either in the case
of pure rotation(VVV = 0) or, whateverVVV , if the sur-
face gradient∇Z is zero, i.e., if the tangent plane at
PPP is parallel to the image plane (frontoparallel surface
condition).

3. Narrow field of view time to collision

3.1. Time to collision as a scaled depth

In the recent computer vision literature, the terms
“time to collision” and “scaled depth” are used inter-
changeably [17,19], and referred to the scalar field

tz = − Z

VVV · kkk , (3)

giving at each image locationppp the ratio between sur-
face depth atPPP and the camera-surfacetranslational
velocitycomponent directed towards the image plane
(a positive quantity for camera and surface getting
closer one to the other).

In principle, computing time to collision as a
scaled depth implies solving in advance the struc-
ture from motion problem, and specifically sepa-
rating (decoupling) the translational and rotational
components of relative rigid motion [9,12]. How-
ever, an approximation of scaled depth (and time to
collision) can be obtained without explicitly solv-
ing for rigid motion, provided that some constraints
are set on relative motion and/or viewing angles
[4]. Widely used approximated formulas for scaled
depth are reported in Table 1, where def

.=‖def‖ and
defϕ

.=defx cos 2ϕ + defy sin 2ϕ.
As it clearly emerges from the table, the stronger

the operational constraints are, the easier is the scaled
depth estimation process, of course at the expense of a
higher probability of gross systematic errors when the
constraints fail to be met perfectly. This is often the
case when the dominant translation and the frontopar-

allel surface constraints are set. (In the specific case
of frontoparallel condition, notice how, in principle,
scaled depth can be not only bounded, but even exactly
computed at any image point.) Hence, when nothing
is known about camera-scene relative geometry and
motion (exterospecificconditions), only the narrow
FOV constraint — which is apropriospecificcondi-
tion, depending only on the observer — can be used.
The narrow field of view constraint limits the range
of visual directions to a small visual angle around the
optical axis for which it is assumed that no significant
deformations exist in the first-order motion field struc-
ture. The± sign in the associated formula, namely,

t−1
z = div ± def

2
, (4)

is due to the fact that the orientation (tilt) of the plane
tangent to the visible surface atPPP is generally un-
known. Several variations to the basic narrow FOV
bound have been proposed so far, attempting to over-
come the tilt ambiguity by coupling the narrow FOV
constraint with additional contraints such as fixation,
motion on a ground plane, partially known motion,
etc. [3,19].

3.2. A case study

In Fig. 2, the reciprocal of time to collision (often
referred to ascollision immediacy) is plotted as a
function of the co-latitude angleϑ spanning half of
the overall visual field (FOV= 160◦) in the image di-
rectionϕ = 0. The case depicted in the figure is quite
general, as it involves both 3D translation and rota-
tion. Specifically, the axis of rotation passes through
pointQQQ = ckkk in space, withc = 100 flu (focal length
units). Hence, relative translationVVV is partially due to
rotation, beingTTT = −10kkk flu · frames−1 the transla-
tion of the axis of rotation, andΩΩΩ = 5jjj◦ · frames−1.
The planar surface has a constant depth gradient equal
to ∇Z = −1

2(iii + √
3jjj). The figure shows that, in
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Fig. 2. Erroneous bound estimate of scaled depth immediacy.

the general case of surface rototranslation, the nar-
row FOV constraint approximation cannot be used to
bound scaled depth at co-latitude angles wider than
a few (say, 15) degrees, since the true value of scaled
depth goes out of its bounds. This is because, while
Eq. (3) only refers to translation and disregards ro-
tation, image divergence and deformation do depend
on both translational and rotational velocities. As a
result,recovering scaled depth is a more difficult task
than determining time to collision. Indeed, unlike
scaled depth, wide FOV time to collision can always
be bounded by first-order structure coefficients of
either the planar or the spherical motion field (see
Section 4), since it encodes translation and rotation
in an undecoupled way.

4. Wide field of view time to collision

4.1. Time to collision revisited

There are, of course, diverse possible definitions of
wide FOV time to collision extending Eq. (3), each re-
ferring to a precise operating context, application and
geometry of the observer. A reference framework of
application is mobile robotics, where time to collision
can be used to carry out free space exploration, obsta-
cle detection and surveillance. In the following, two
distinct definitions of time to collision are given, rely-
ing, respectively, on a spherical and a planar observer
model (see also Fig. 3).

Fig. 3. Geometric meaning of planar and spherical time to collision.

Spherical time to collision.The spherical time to col-
lision is defined as the timetr it would take a pointPPP
to reach the camera center by traveling at a uniform
total velocityṖPP · (−rrr)rrr along the line of sight, i.e.,

tr = − R

ṖPP · rrr . (5)

Planar time to collision. The planar time to collision
is defined as the timetp it would take a pointPPP to
reach the camera plane by traveling at a uniformtotal
velocityṖPP · (−kkk)kkk along the optical axis, i.e.,

tp = − Z

ṖPP · kkk . (6)

Eq. (5) provides a convenient way of defining time
to collision having a sphere as the imaging surface.
Such a definition has a strict relationship with the
“time to flight” of sonar-based robotic systems, being
best suited to robotic applications involving a robot
with no dominant dimensions (e.g., typical mobile
robots). Eq. (6) is the natural extension of Eq. (3) to
the general case of planar observer and relative roto-
translation, the optical axis of perspective providing
the normal to the surface of collision (camera plane).
Since the actual imaging sensors’ dimensions are quite
small, collision with the (infinite) camera plane has
more the nature of a virtual event than that of a phys-
ical event. Yet, in a robotic application planar time to
collision could be appropriate in the case of a robot
with dominant transverse dimensions (think also of an
aircraft and its wings).
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Fig. 4. Scaled depth and wide FOV collision immediacies.

The novel definitions of Eqs. (5) and (6) holdwhat-
ever be the relative motion and the FOV, thus gener-
alizing Eq. (3) to the case of arbitrarily wide FOV. It
is easy to prove that both the equations yield scaled
depth when the narrow FOV constraint is met: this fact
is clearly visible in Fig. 4, reporting collision imme-
diacies as defined in Eqs. (3), (5) and (6), respectively,
for the same motion and surface parameters of Fig.
2. It appears that these three quantities are approxi-
mately equal only for small values ofϑ , becoming
significantly different for FOV of 30◦ or larger. This
confirms the fact that scaled depth is well approxi-
mated as a time to collision only at small co-latitude
angles.

4.2. Computing wide FOV time to collision

A closed form bound is derived for the two times
to collision, and an operational way to compute each
bound from local image plane observations is pro-
vided. First of all, notice that, as a direct consequence
of Eqs. (5) and (6) and the statements of Section 2,
the planar time to collision can be obtained at any
co-latitude from the spherical time to collision and the
spherical motion field component alongttt , as

t−1
p = t−1

r + tanϑu′. (7)

It is also easy to show that the spherical time to col-
lision is bounded, at any co-latitude angleϑ , by the

divergence and deformation of the spherical motion
field, i.e.,

t−1
r = div′ ± def′

2
. (8)

Eq. (8) is proved by regarding the plane tangent to the
unit sphere atrrr as the image plane of avirtual camera
with optical axisrrr, and noting that an equation akin to
Eq. (4) holds at the origin of the virtual image plane
(see also [17]).

Hence, to compute both the spherical and planar
times to collision by planar motion field estimates,
there remains to show how to compute spherical quan-
tities from image plane observations. The following
result, proved in [4], is used, allowing to project the
planar motion field and its first-order structure onto
the unit sphere.

Proposition (Correspondence of planar and spherical
motion fields).
1. The planar and spherical motion fields are related

one-to-one by[
u′

v′

]
= H

[
u

v

]
(9)

where

H =
[

cos2ϑ 0

0 cosϑ

] [
cosϕ sinϕ

− sinϕ cosϕ

]
.

2. The planar and spherical motion parallaxes, en-
coded respectively in the Jacobian matrices M and
M ′, are related one-to-one by

M ′ = HMH−1 + K ′ (10)

where

K ′ = − tanϑ

[
2u′ 0

v′ u′

]
.

To summarize, once the planar field and parallax
have been estimated, Eqs. (9) and (10) can be used
to compute in closed form their spherical counter-
parts; then, an equation analogous to Eq. (2) allows
extracting the spherical divergence and deformation
from M ′, and eventually computing the planar and
spherical times to collision according to Eqs. (7)
and (8).
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Fig. 5. Spherical (left) and planar (right) collision immediacies, and their estimates.

Fig. 5 illustrates the results for the case of a planar
visible surface rototranslating rigidly with respect to
the camera in the same motion and surface conditions
of Fig. 2. A glance to Fig. 5 shows that, differently
from Fig. 2,the true values of the spherical and planar
times to collision always remain inside the bounds
obtained in this section.

4.3. Computational analysis

A further insight into the framework is gained in the
following discussion of the computational advantages
of computing wide FOV time to collision in closed
form, and of using log-polar sensors in the place of
conventional cameras.

4.3.1. The importance of a closed form
The closed form formulation of Eqs. (9) and (10)

has a clear computational advantage over the corre-
sponding algorithmic formulation, i.e., first remapping
the planar field onto the unit sphere using Eq. (9),
and then obtaining the spherical parallax by direct dif-
ferentiation of the spherical field. Indeed, apart from
being impractical, using the algorithmic formulation
could be even impossible, as it happens when only a
sparse planar field is available.

A delicate point about spherical field differentiation
is related to the geometric distortion of the neighbor-
hood of support for the computation of derivatives. In
fact, not only the motion field in the neighborhood of
an image point is deformed when passing from the

plane to the sphere, but the neighborhood itself un-
dergoes the deformation governed by Eq. (9), since
it can obviously be regarded as the particular motion
field with the identity matrix as Jacobian (see Fig.
6). In conclusion, both the motion field and its sup-
port neighborhood must be projected onto the sphere,
where for field differentiation the nonregular sampling
of the support must be taken into account.

4.3.2. Advantages of using log-polar sensors
Log-polar imaging sensors are a special kind of sen-

sors provided with a radial disposition of photosensi-
tive elements instead of thexyorganization of conven-
tional raster cameras. In the log-polar case the ratio
between consecutive radii is equal to a constanta > 1
so thatξγ log-polar pixels s.t.ξ = loga

√
x2 + y2 −h

and γ = k arctan(y/x), h and k real positive, grow
exponentially in size as the radial coordinate increases
from the uniform resolution fovea towards sensor pe-
riphery [15]. As a result, while in traditional cameras
the tangent of the FOV angle grows only linearly with
sensor dimensions, in a log-polar sensor such growth
is exponential, and a trade-off exists between image
resolution and FOV width for a fixed number of sensor
pixels (see Fig. 7). It is thus clear that using a log-polar
sensor to estimate time to collision proves particu-
larly convenient if a wide FOV has to be monitored,
and a dense time to collision map has to be computed
[6,19].

Some authors have argued recently that radial sen-
sors have further specific advantages over traditional
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Fig. 6. Two image projections of a spherical motion field of pure deformation: (a)ϑ = 0 (undistorted field); (b)ϑ = 45◦.

cameras related to the computation of time to col-
lision. For example, in [19], a formula is proposed
to compute exactly time to collision for an arbi-
trarily large FOV. Yet, as shown in Table 1, such a
result appears not to be due to intrinsic advantages
of radial sensors but to the strong assumption that
the surface be frontoparallel at each imaged point.
Anyway, as proved in [4], the log-polar organiza-
tion of sensor shape does present a computational
advantage over traditional sensors in the wide FOV
computation scheme expounded in this paper. The
advantage is related to the fact that the spherical
field can be obtained from the log-polar representa-
tion of the corresponding planar field as (compare to
Eq. (10))

Fig. 7. Log-polar sensor geometry.

M ′ =
[

cosϑ 0

0 1

] [
∂ξ̇
∂ξ

+ ln a ξ̇ k ln a
∂ξ̇
∂γ

− γ̇
k

1
k ln a

∂γ̇
∂ξ

+ γ̇
k

∂γ̇
∂γ

+ ln a ξ̇

]

×
[

secϑ 0

0 1

]
+ K ′, (11)

hence without the need (as with raster cameras) to
rotate, at each image pixel, the planar coordinate frame
by an angleϕ.

5. Experimental results

Several experiments were conducted using the
framework above to estimate time to collision from
both videotape and live image sequences.

5.1. Time to collision from dense optic flow

Figs. 8(a) and (b) show two subsequent frames of
a videotape sequence featuring the rotation of a rigid
flat panel in front of the camera. This situation is kine-
matically equivalent to having a camera mounted on a
mobile robot rotating about a given point of the ground
floor in proximity of a wall. Fig. 8(c) shows the com-
puted optic flow for a specific frame of the sequence.
Optic flow computation was done by tracking image
corners, and then interpolating linearly the obtained
sparse image motion so as to get a smooth and dense
motion field approximation (corner tracking also au-
tomatically provides an estimate of motion parallax).
Due to the specific kind of 3D motion of the panel, the
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Fig. 8. A rotating plane. (a), (b): Two subsequent frames of the original sequence. (c): Computed optic flow. (d)–(f): Scaled depth, planar
and spherical immediacies (brighter means closer).

resulting image motion features a positive divergence
in the left part of the image (where the panel is com-
ing closer to the camera), and a negative divergence
in the right part of the image — a zero divergence
being obtained in correspondence of the vertical axis
of rotation. The second row of Figs. 8(d)–(f) show in
order average scaled depth, planar and spherical col-
lision immediacies: negative or zero immediacies are
indicated in black. As evident from a qualitative com-
parison of the three results, the spherical and planar
times to collision appear to be more appropriate than
scaled depth to monitor rotations with respect to a
planar fobject (it is evident, in Figs. 8(e) and (f), the
image area corresponding to approaching motion). In
fact, unlike Eqs. (7) and (8), the scaled depth immedi-
acy bound of Eq. (4) fails to take into account the ef-
fect of 3D rotations on motion vectors, and uses only
planar motion parallax to get a time to collision esti-
mate. A quantitative analysis of the results confirms
this point (with an error of within 5% with respect to
the ground truth for the planar and spherical times to
collision).

5.2. Time to collision from active contour
deformations

Fig. 9 (left) shows two frames of a real-time
sequence featuring a rototranslating hand as if
“slapping” the camera. The hand is tracked using
an active contour, whose deformations are used to
compute the average first-order parameters of image
motion as in [5]. The tracker is initialized at startup
using the computer mouse, and deforms at run-time
in an affine way. The tracker includes a Kalman fil-
ter ensuring a stable and robust behavior even in the
presence of modeling uncertainties and distractors.
The hand starts moving at timet = 0 and stops after
4 s. The computed average collision immediacies are
reported in Fig. 9 (right), showing that after a short
transition time due to contour inertia, the value of the
spherical and planar times to collision is quite close
to the ground truth value (specifically, around 7 s to
collision in the spherical case, and 20 s in the planar
case during hand motion). Again, due to the fact that
the slapping action involves more a hand rotation than
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Fig. 9. A slapping hand.Left: two frames of the original sequence with superimposed active contour tracker.Right: spherical, planar and
scaled depth collision immediacies.

a translation, the collision immediacy estimate based
on scaled depth has at any time a very low value
(hence of limited practical use) in all parts of the
image.

6. Conclusions and future work

The main contribution of the paper is to show that
although scaled depth and time to collision are usually
considered as the same visual entity, they generally
differ especially in the visual periphery. Better still,
time to collision can be estimated however wide be the
sensor’s FOV by suitable combinations of first-order
motion field parameters, while scaled depth cannot.
Two different wide FOV times to collision were intro-
duced, each referring to a specific model of geometric
layout of the observer; the two definitions converge to
the usual scaled depth definition of time to collision
in the presence of a narrow FOV. A closed form solu-
tion was also discussed to the problem of computing
wide FOV time to collision with both traditional and
space-variant sensors. Results of experiments with
both dense and sparse visual measurements were
finally described.

The work can be expanded in several directions. For
example, a more general differential geometry formu-
lation can be introduced to study the problem of vi-
sual parameter estimation in the case of general sensor
shape and to prove the feasibility of the computational

framework to applications involving nonrigid motions.
Currently, a new model of space-variant sensor is be-
ing experimented with, which was explicitly designed
so as to carry out the computations required by the ap-
proach with a minimum of computational effort. Also,
an extensive experimentation of the approach is be-
ing carried out to demonstrate its suitability for appli-
cations in robotics, human–computer interaction and
multimedia technology.
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