
Reliability Assessment of Principal Point Estimates1

for Forensic Applications2

Massimo Iuliania,c, Marco Fanfanib, Carlo Colombob, Alessandro Pivab,c,∗3

aDept. of Mathematics and Computer Science, University of Florence, Firenze, Italy4

bDept. of Information Engineering, University of Florence, Firenze, Italy5

cFORLAB Forensic Science Laboratory, University of Florence, Prato, Italy6

Abstract7

Although quite recent as a forensic research domain, computer vision analysis of

scenes is likely to become more and more important in the near future, thanks to

its robustness to image alterations at the signal level, such as image compression

and �ltering. However, the experimental assessment of vision-based forensic

algorithms is a particularly critical task, since they cannot be tested on massive

amounts of data, and their performance can heavily depend on user skill. In

this paper we investigate on the accuracy and reliability of a vision-based, user-

supervised method for the estimation of the camera principal point, to be used in

cropping and splicing detection. Results of an extensive experimental evaluation

show how the estimation accuracy depends on perspective conditions as well as

on the selected image features. Such evidence led us to de�ne a novel visual

feature, referred to as Minimum Vanishing Angle, which can be used to assess

the reliability of the method.

Keywords: Image Forensics, Scene level analysis, Geometric Constraints,8

Minimum Vanishing Angle, Cropping detection, Splicing detection.9

1. Introduction10

Image Forensics has been proposed as a solution for authenticating the con-11

tents of digital images [1, 2, 3]. This technology is based on the observation12

that each phase of the image history � from the acquisition process, through13
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its storage in a compressed format, to any editing operation � leaves distinc-14

tive traces on the data, as a sort of digital �ngerprint [4]. It is then possible15

to determine whether a digital image is authentic or modi�ed, by detecting the16

presence, the absence or the incongruence of such traces, that are intrinsically17

tied to the digital content itself. Forensic traces can be found both at �signal18

level� (invisible footprints introduced in the signal statistics, like demosaicing19

artifacts [5], sensor noise [6], or compression artifacts [7, 8]) and at �scene level�20

(inconsistencies in shadows [9], lighting [10, 11], or in perspective and geometry21

of objects [12, 13]). The former are typically detected by automatic methods,22

but they often exhibit lower e�ectiveness when the investigated content has been23

subjected to an unknown chain of processes (e.g., �ltering, resizing, compression)24

that may partially or completely spoil the traces left by previous operations [14].25

The latter usually require particular constraints on the scene (e.g. the presence26

of Lambertian convex surfaces for lighting estimation [15]) but have the advan-27

tage of being robust to common image processing operations, thus appearing28

suitable even for low resolution images, or when the content has undergone mul-29

tiple compressions. While in the literature a great e�ort has been devoted to30

evaluate the performance of signal-based forensic methods in terms of detection31

accuracy and reliability, a limited analysis has been carried out until now on32

scene-based techniques. This is mainly due to the fact that such algorithms are33

usually tested on small datasets only, since they cannot exclude some human34

intervention, e.g. image feature selection or analysis supervision.35

This paper represents � to the best of our knowledge � the �rst attempt36

to analytically evaluate the performance of a scene level trace. In particular,37

we addressed the problem of estimating the camera principal point (PP) (whose38

position in the image under analysis is usually detected by exploiting vanishing39

points related to three mutually orthogonal directions [16]); whose application40

in a forensic scenario has been proposed in some recent works [17, 18, 19]. For41

our evaluation, several tests have been performed, on both synthetic and on real42

images, by varying both the point of view � so as to obtain di�erent perspective43

conditions � and the number and position of the extracted features. A critical44
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study of the obtained results has led us to de�ne a novel feature, referred to45

as Minimum Vanishing Angle (MVA), allowing us to measure the reliability of46

the estimated PP. Using the MVA concept, we have also been able to establish47

a feature selection criterion. Speci�cally, one should just care about choosing48

the image lines that provide the widest possible MVA, since the accuracy of PP49

estimation relies more on MVA amplitude than on the amount of data (i.e. image50

lines) used.51

The paper is organized as follows: in Section 2 the State of the Art is brie�y52

presented, and in Section 3 we brie�y review the theory behind the adopted53

PP estimation method. In Section 4 we introduce the MVA and its relation54

with the image perspective conditions. Then in Section 5 an in deep analysis of55

the reliability of the method is given. Section 6 presents two possible forensic56

applications of the PP: cropping detection � for which we provide a detailed57

accuracy analysis � and splicing detection. Section 7 concludes the paper and58

summarizes the contributions in light of the achieved results.59

2. State of the Art60

The estimation of the PP from a single image is a known issue in com-61

puter vision and photogrammetry, usually embedded into the camera calibra-62

tion problem [20, Chapter 2]. In order to calibrate the camera, accurate o�-line63

techniques usually require a known pattern in the scene [21, 22]. Other methods64

use video sequences or multiple images to self-calibrate the camera while solv-65

ing the Structure from Motion problem [23]. In addition, other scene elements66

such as coaxial circles, or Manhattan-World structure [24] can be exploited for67

calibration tasks [25, 26, 27, 28].68

Reported methods assume to use genuine images only, without any malicious69

modi�cation. This hypothesis allows the authors to impose constraints on the70

parameters to ease and improve the estimation (for example, the PP is often71

initialized in the image center). In a forensic application scenario, however, this72

assumption doesn't hold; Moreover, we have to typically deal with single images73
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already acquired. So, a calibration approach has to exploit useful characteristics74

of the scene. Given the abundance of images depicting man-made environments,75

we focus on techniques based on the Manhattan-World assumption.76

Given these di�culties, in the forensic literature only a few methods have77

been presented that try to exploit the camera PP as a clue for tampering de-78

tection. In [17], the authors presented a method based on the estimation of79

the homography mapping a person's eyes to the image plane. Then, the PP80

is recovered by homography decomposition (supposing focal length is known)81

and exploited for splicing detection. A similar approach, that exploits circles in82

the scene to obtain the PP position, is presented in [18]. In [19], the authors83

notice that asymmetric cropping of an image introduces a correspondent shift84

of the principal point. Hence, they suggested that the distance between the85

estimated PP and the image center can be exploited as evidence of cropping.86

Slightly di�erent, but still related to this topic, is the approach described in [29]87

where, instead of estimating the PP, tampering detection is based on the direct88

observation of the vanishing points of di�erent 3D structures (e.g. buildings).89

3. Principal Point Estimation90

The mapping between the 3D world and its 2D images is usually modeled as91

a central projection of a world point onto the image plane (pinhole model [30],92

see Fig. 1a). The projection rule can be formally written as m = K[I|0]M,93

where m = (x, y, 1)> and M = (X,Y, Z, 1)> are the homogeneous coordinates94

of a 2D image point and its corresponding 3D world point respectively, whereas95

K is the camera matrix, embedding the internal parameters of the acquisition96

device. I is the identity matrix, and 0 a column vector of zeros. Typically, the97

camera matrix is represented as98

K =


f s px

0 ρf py

0 0 1

 , (1)
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where f is the focal length, while the aspect ratio ρ and skew s take into account99

the actual shape of a pixel. Lastly, (px, py) are the coordinates of the PP (see100

again Fig. 1a). Modern cameras have reached a high level of quality, with unity101

aspect ratio and zero skew. So, without signi�cant loss of accuracy, the K102

matrix can be modeled with ρ = 1 and s = 0, passing from 5 to 3 degrees of103

freedom [31].104

To obtain the PP, we can exploit the relation among three vanishing points,105

related to mutually orthogonal directions in the 3D space [16]. A vanishing106

point (VP) is the intersection point of all the projected lines that are mutually107

parallel in the scene (i.e. they share the same 3D direction). Note that, in a108

practical scenario, if more than two concurrent image lines are available, their109

intersection will not be unique (see Fig. 1b) � since noise can perturb the110

image line detection � and the VP has to be estimated with an optimization111

algorithm. In our experiments we employ the solution reported in [16], where112

after initializing the VP by solving a linear least square problem, a non-linear113

optimization is carried out.114

Let v1 and v2 be two VPs related to 3D orthogonal directions. Then115

v>1 ωv2 = 0, where ω = (KKT )−1 is the image of the absolute conic, depending116

on the three camera parameters f and (px, py). Given three vanishing points cor-117

responding to three orthogonal directions, we can thus de�ne three independent118

linear constraints on ω, and �nally estimate ω by solving a linear homogeneous119

system. Eventually K can be obtained using the Cholesky factorization of ω,120

from which both focal length and principal point can be estimated [16].121

The estimation of the PP on a single image can be summarized in three main122

steps: (1) selection of three groups of concurrent image lines, corresponding to123

mutually orthogonal directions in the scene; (2) estimation of vanishing points;124

(3) computation of ω and recovery of f and (px, py).125

Note that the �rst step can be done in a manual or automatic way. In126

the computer vision �eld, many works have appeared dealing with the prob-127

lem of line selection and grouping for VP estimation by using Expectation-128

Maximization approaches [32], the Hough transform [33], or robust estimators,129
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(a) (b)

Figure 1: (Best viewed in color) (a) Pinhole camera model: Given the camera center C,
expressed in the world coordinate system {X,Y,Z}, and the image plane π orthogonal to
the Z-axis, the principal point PP is the intersection of the Z-axis with π, while the focal
length f is the distance between C and π. A 3D point M is projected in m on the image
plane as m = K[I|0]M. (b) In red, green and blue three sets of image lines corresponding to
orthogonal 3D directions. Since noise can perturb the line orientations the intersection can
be not unique, as shown in the magni�ed area.

such as the J-Linkage algorithm [34], employed in [35]. If the camera cali-130

bration is known, mutually orthogonal line clusters can be selected automati-131

cally [36, 37, 38]. On the other hand, with no a priori information about camera132

calibration (which is our case), it can be extremely hard to check the vanishing133

point orthogonality without user intervention or by imposing simple heuristics,134

such as the selection of the most populated clusters. So, in this work we pre-135

ferred to use a manual line selection scheme. Moreover, notice that also in136

[29] parallel lines are validated by the user, while in [19] no speci�c indication137

is given about the method used to automatically detect orthogonal vanishing138

points.139
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4. Perspective Analysis140

In this Section, we evaluate the performance of the PP estimation algorithm141

under di�erent perspective conditions, so as to determine if and how its accuracy142

changes when passing from weak to strong perspective images. The following143

two subsections report the results of synthetic and real world tests respectively.144

4.1. Synthetic tests145

In order to carry out extensive tests, a synthetic dataset featuring 248 rep-146

resentative camera poses was built as follows. A 3D cube with unit length sides147

was placed in the center of the world coordinate frame with its X, Y , Z axes148

aligned with the cube. Then, 248 camera center positions were sampled over a149

sphere of radius r, by varying their azimuth by an angle α ∈ (0, π/4] and their150

altitude by an angle β ∈ (0, π/2) with steps of π
32 and π

64 respectively; all other151

perspective conditions can be deduced by symmetry. Since the VPs are invari-152

ant to translation, the camera distance with respect to the world coordinate153

frame (i.e. the radius r) was kept �xed. In the camera coordinate frame, the154

z-axis is the line passing through the camera center and the world coordinate155

origin. The x-axis is perpendicular to the z-axis and parallel to the world plane156

de�ned by X and Y and, �nally, the y-axis is obtained from the cross product157

between the unit vectors of the z and x axes (see Fig. 2).158

We excluded extrema positions � i.e. when α = 0, β = 0, β = π/2 � that159

produce orthographic images of the cube, thus leading to known degeneracies160

in VP estimation. Likewise, camera roll was not taken into account consid-161

ering that, as any pure rotation, no parallax e�ects are induced, thus leaving162

the perspective appearance of the image unaltered. From each camera pose163

P (α, β), an image of the cube was acquired by using a virtual camera with164

known PP and focal length. With noise-free measurements (i.e., line points165

are selected with no error), the PPs were estimated with an Euclidean error166

with respect to the ground truth lower than 10−9 pixels in all the positions.167

The behaviour in the presence of noise was then evaluated by carrying out168
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Figure 2: (Best viewed in color) Synthetic data setup. A cube is placed at the center of
the world coordinate system O, with its sides aligned with the axis X,Y ,Z. The image is
taken from the camera � represented here as a pyramid � with center o(α, β) with a relative
coordinate system x, y, z.

a Monte Carlo simulation: for each pose we collected 1000 principal points169

PP (α, β) = {PP1(α, β), . . . , PP1000(α, β)} by perturbing the line points with a170

noise from a zero mean Gaussian distribution with standard deviation σ = 0.5171

pixel � representing an uncertainty of at most 1.5 pixel radius in points se-172

lection. For each test we determined a robust index for the dispersion of the173

collected PP (α, β) as follows: we trimmed the 5% of the points with highest174

distance from the ground truth PP, then we calculated the standard deviations175

(STDx, STDy) of the remaining points along the x and y axes and we chose176

their maximum as a dispersion index of the estimated PP for that position.177

Results are graphically reported in Fig. 3a, where the synthetic cube is placed178

in the origin of the coordinate frame aligned with the orthogonal axes, while179

each point represents a camera position, colored according to the correspondent180
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Figure 3: (Best viewed in color) 3D plots representing results obtained with the synthetic
data setup: in both �gures, the virtual cube is placed in the origin of the coordinate system,
aligned with the orthogonal axis. Colored points represent the tested camera positions. In (a)
we report the maximum STD (between x and y-axis) of the estimated PP: the PP dispersion
is bigger for reddish and, lower for blueish points. In (b) the same camera poses are reported
but with color related to the MVA: poses with wider MVA are reported in blue, while poses
with narrower MVA are in red. Note that poses with lower STD are characterized by wider
MVA, and vice-versa. In both plots, the thresholds used to assign colors are obtained from
the deciles (i.e. ten quantile with step of 10%) of the respective distribution (STD and MVA).

estimated dispersion. Notice that the scattering of the estimated PPs is strictly181

related to the image perspective: Most of the poses have comparable uncertainty,182

except when marginal α or β occurs. In those cases, the computation accuracy183

of the VPs strongly drops, and the PP estimates become unreliable and virtually184

useless for forensic purposes.185

These results suggest the possibility to de�ne a novel image feature to be186

used by the forensic analyst to evaluate the expected accuracy. Firstly, given a187

vanishing point vi, let θi be the widest angle among those obtained from the188

pairwise intersection of lines concurrent to vi (see Fig. 5). Then, given θ1, θ2,189

and θ3, related to three mutually orthogonal VPs, we can de�ne the Minimum190

Vanishing Angle (MVA) as191

MVA = min(θ1, θ2, θ3) (2)

A visual representation of the MVA values for di�erent camera poses is reported192

in Fig. 3b. Its comparison with the results in Fig. 3a con�rms our intuition193
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(P1080104) (P1080005) (P1030004) (P1080057)

(P1080021) (P1080025) (P1020867) (P1080047)

(P1020829) (P1040863) (P1020830) (P1040798)

Figure 4: Twelve images, with associated names, from the York Urban Database [39], used in
the real test to assess results obtained with the synthetic cube dataset. Top row shows images
with strong perspective, with MVAs spanning from 7.52◦ to 5.53◦. Second row includes mid
perspective images with MVAs from 3.96◦ to 2.11◦. Finally, the last row shows images with
low perspective and MVAs from 1.09◦ to ∼ 0.00 ◦. MVA here reported are the mean value of
the MVAs computed on each image during the tests, since any user can select di�erent lines
and obtain slightly dissimilar MVA.

Figure 5: (Best viewed in color) Graphical visualization of angles obtained from the pairwise
intersection of lines concurrent to the same VP. In this case θi correspond to α1,4 since it is
widest angle available.

that the proposed feature is a sensible indicator of PP dispersion. Indeed, small194

MVAs are associated to marginal poses characterized by a weaker perspective.195

Notice that also in [29] the authors try to de�ne a way to evaluate the quality196

of the estimates: They propose to use the distance between the VP and the PP,197
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the latter supposed to be in the image center. However, this criterion may lead198

to erroneous evaluations in the presence of cropping, since the PP would not199

be close to the image center. Moreover, relying on a distance-based criterion200

instead than on an angle-based criterion such as ours, would inevitably introduce201

a dependency on image resolution.202

4.2. Tests on real images203

To compare the synthetic data with real experiments we clustered the 248204

synthetic poses in three groups according to their correspondent MVAs: Weak205

Perspective (MVA < 1.5◦), Mid Perspective (1.5◦ ≤ MVA < 4◦), and Strong206

Perspective (MVA ≥ 4◦). Then we considered 12 images from the York Urban207

Database [39] spanning several MVAs between 0◦ and 7.52◦. For each image 25208

di�erent PPs were computed, as described in Section 3, by letting 25 di�erent209

users to select three lines for each direction. In Figure 4 we reported the name of210

the selected images, their MVAs estimated by users selection and the perspective211

group they belong to (Weak, Mid or Strong).212

The achieved results are compared in Figure 6. Crosses represent the es-213

timated PPs on real images: in red, green and blue for the images belonging214

to Weak, Mid and Strong perspective groups respectively. The plotted ellipses215

represent the 95% con�dence ellipses estimated on the corresponding synthetic216

clusters. Synthetic results show that the estimation is expected to be extremely217

noisy on the Weak perspective cluster while more accuracy and stability is ex-218

pected on the Mid and Strong cluster where the MVA is wide enough. Real219

data con�rm the synthetic prediction (STDx is 435.69, 38.52 and 29.69 pixels220

on Weak, Mid and Strong perspective clusters respectively). Looking at the pic-221

ture, a horizontal dispersion of the real data sticks out. This is due to the fact222

that the images of the considered dataset are characterized by small altitudes,223

while the synthetic data is built considering all possible viewing angles.224
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Figure 6: (Best viewed in color) Comparison of results achieved from synthetic and real images.
Crosses represent the estimated PPs (red for subway, green for hall, blue for building). Ellipses
enclose the PPs distribution obtained in synthetic tests.

5. Image Characteristic Analysis225

In the previous section we de�ned the MVA feature, after observing a strong226

relationship between the amplitude of the vanishing angles and the PP estima-227

tion accuracy. In practical cases, the scene may allow the forensic analyst to228

extract more lines for each direction and possibly forming even wider MVAs. In229

this section we investigate more deeply the estimation accuracy with reference230

to the MVA amplitude. For this purpose, we take into account only MVAs231

with su�cient amplitude able to provide reliable results, and we evaluate how232

increasing it improves the estimation accuracy.233

We also study how the performance is sensitive to an increase in the number234

of lines intersecting in the same VP: Since VPs are obtained by minimization,235

we expect an accuracy improvement when more data are available. As for the236

tests of Section 4, a synthetic image dataset is used �rst, then tests on real237
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(a) (b)

(c) (d)

Figure 7: (Best viewed in color) Example images produced to test the PP estimation algorithm
with reference to the extracted features. On the left, images with two lines for each VP, with
di�erent minimum vanishing angle (i.e. MVA={5,20}); on the right, similar images but with
�ve lines. Lines with the same color converge to the same vanishing point.

images are carried out to corroborate the synthetic results.238

5.1. Synthetic tests239

We generated di�erent MVAs with di�erent numbers of lines: starting with240

two lines for each VP, with an angle of incidence of 5◦, we progressively added241

new lines into the image and increased the angle. More speci�cally, we used242

n = {2, 3, 4, 5} lines, with a length of 200px, and angles θ = {5◦, 10◦, 15◦, 20◦}243

(see Fig. 7 for some synthetic image examples). Gaussian noise with zero mean244

and standard deviation σ = 0.5 pixel was added to the point coordinates, and245

the evaluation was repeated 1000 times for each image.246

Table 1 shows the maximum STDs (as de�ned in Section 4.1) for the esti-247

mated PPs, along the x and y image directions. As clearly visible, the accuracy248

is almost stable when adding new lines, while it signi�cantly grows using well249

spaced lines (i.e., wider MVAs).250

5.2. Tests on real images251

As before, the results obtained with the synthetic data were validated on252

real tests with the help of 25 di�erent users, having to select up to �ve lines253

per VP, with quasi regular spacing. For this purpose, the image of a cube-like254
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Table 1: Max STD of estimated PPs between x and y direction

MVAs

5◦ 10◦ 15◦ 20◦

#
L
in
e
s 2 18.55 10.15 7.09 5.98

3 19.54 9.85 6.59 5.56
4 18.67 9.53 6.17 5.12
5 17.03 8.74 6.12 4.79

(a) (b)

Figure 8: Examples of lines selected by the user on the real image searching for (a) narrow
and (b) wide MVAs.

checkerboard pattern was used. The considered image allows the user to select255

either narrow or wide MVAs of approximatively 5◦ and 20◦ respectively. 25 PPs256

were collected in both cases � i.e. the narrow (Fig. 8a) and wide (Fig. 8b) selec-257

tion schemes � and the results were evaluated with respect to MVA amplitude258

and number of lines.259

The PPs estimated on the real images are represented as colored dots in260

Fig. 9a � in red for angles of 5◦, in blue for wider angles (20◦). The 95%261

con�dence ellipses of PPs obtained during the synthetic tests (see Section 5.1)262

are also shown, with the same color coding. In Fig. 9b, a similar plot considering263

instead the line number is presented. Almost all PPs obtained on the real264

images fall inside the associated ellipse, con�rming that synthetic results are in265

close agreement with the real ones. Furthermore, these tests corroborate the266
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observation that increasing the MVA clearly improves the estimation stability267

(Fig. 9a), while adding more lines does not signi�cantly a�ect the performance268

(Fig. 9b).269

In conclusion, results obtained in Sections 4 and 5 can be summarized in270

two main outcomes: (i) Images characterized by a narrow MVA should not be271

used for forensic analysis based on PP; (ii) To improve accuracy, the selection272

of few well spaced lines is preferable over many, closely spaced lines.273
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Figure 9: (Best viewed in color) Results on real images obtained by varying MVA ans and
line number. In (a) dots represent estimated PPs, clustered with respect to the MVA, while
in (b) PPs are grouped by the line number. Reported ellipses represent the PP dispersion on
the synthetic data. The coordinate system is centered in the ground truth PP.

6. Forensic Case Studies274

In [19] the distance between the PP and the image center is exploited to275

identify asymmetrically cropped images (see Fig. 10). Once computed, the276

image and the PP are normalized in the interval [−1, 1]. Then a cropping277

threshold (CT) � i.e. the radius of a circle centered in the estimated PP �278

is de�ned, and the image is labeled as cropped if the distance of the PP from279

the image center exceeds CT. In the following tests we show how the achieved280

results can support the analyst in assessing the cropping detection performance:281

• Perspective-based Test : we verify that the MVA amplitude can suggest282

whether the cropping detection is applicable on a query image. The test is283
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Figure 10: (Best viewed in color) In a pristine image (surrounded by a red border) the image
center (red cross) falls near the PP (purple dot). On the other hand, if an upper-right cut
(green area) is performed, the image center (green cross) shifts falling away from the PP, that
remains �xed. The green area is related to the cropping percentage (CP). Blue and cyan
circles, centered on the PP, represent instead two cropping thresholds (CT): note that in this
example, using the smaller CT (blue circle) the cropping will be successfully detected, since
the center of the cropped image center (green cross) fall outside the circle. On the other hand,
using the bigger threshold (cyan circle), the image will be erroneously labeled as pristine.
Note that in this �gure we changed the aspect ratio of the original image (Fig. 4(P1030004))
so to visualize the normalization process in [-1,1].

performed on the synthetic and real data de�ned in Section 4 and con�rms284

that the technique cannot be applied on images with a narrow MVA;285

• Characteristic-based Test : we assess the performance variations when286

more lines and wider MVAs are available on the image. The test is per-287

formed on the synthetic and real data de�ned in Section 5;288

• Robustness Test : we verify the robustness of the cropping detection to289

image compression and resizing. We consider a practical case where the290

image has been exchanged through Facebook at low quality, thus having291

been resized and compressed.292

In our experiments we consider both cropping percentage (CP) � i.e. the293

size of the cut � and CT from 0% to 50% of the image size, with steps of 5%.294

Results are reported for an upper-left cropping only, where both dimensions of295

the image have been cut with the same percentage, thus leaving unchanged the296

image aspect ratio. However, tests were performed on all the other eleven cases297
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of asymmetric cropping too (upper, left, right, bottom, upper-left, upper-right,298

bottom-left, bottom-right, left-upper-right, upper-right-bottom, right-bottom-299

left, bottom-left-upper). These results are summarized in the supplemental300

material where is shown that performances signi�cantly increase between Weak301

and Mid perspective in all the cropping cases, con�rming that the proposed302

feature allows the analyst to decide whether the cropping detection can possibly303

be applied to a query image.304

When useful, the performance was evaluated using the Receiver Operating305

Characteristic (ROC) curve, where each point corresponds to True Positive (TP)306

and False Alarm (FA) rates for a given CT. The Area Under Curve (AUC) is307

used to compare the overall performance under di�erent conditions: the more308

the AUC is close to one, the better is the detector accuracy. In some cases the309

mean accuracy was also reported (computed as the average of TP and TN rates310

on all considered cropping percentages). For the sake of presentation, results311

have been grouped into two clusters, corresponding to slightly cropped (lower312

than 25% of the image) or strongly cropped (between 25% and 50%) images.313

6.1. Perspective-based Test314

In this test we assess the performance of the cropping detection with ref-315

erence to perspective conditions. We considered both synthetic and real PPs316

acquired in subsections 4.1 and 4.2 respectively. The cropping detection perfor-317

mance was evaluated separately on the three clusters (Weak, Mid and Strong318

Perspective) for both synthetic and real PPs. In Figure 11 we reported the319

ROC curves considering slightly and strongly cropped images, while in Table 2320

we reported the AUC values. In Table 3 we summarize the cropping detection321

performance on the three clusters for di�erent CTs, namely: FA rate, TP rate322

for both slight and strong cropping, and the mean accuracy. Note that we only323

report results considering the CTs in [0.05, 0.25], since we noticed a progressive324

performance drop for higher CTs.325

These results suggest that, given a threshold, the false alarm rate may326

strongly depend on the MVA. For instance, a false alarm of 0.03 on the Mid327
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Table 2: AUC for Perspective based Test on synthetic and real data

Synthetic Data
CP Weak Mid Strong

<25% 0.60 0.70 0.72
25%-50% 0.82 0.97 0.99

Real Data
CP Weak Mid Strong

<25% 0.56 0.77 0.81
25%-50% 0.73 1.00 1.00

perspective cluster (real data) corresponds to a threshold of 0.25 of the image.328

However, the same threshold on the Weak perspective cluster corresponds to a329

false alarm of 0.73. Both synthetic and real results con�rm that the cropping330

detection can hardly be applied on Weak perspective images and a threshold on331

the MVA can be chosen to discern unusable images (AUC passes from 0.73 to332

1 from Weak to Mid perspective on real images). Furthermore we notice that,333

on images characterized by decent perspective (MVA > 1.5), the technique is334

extremely e�ective when the applied cropping is greater than 25% of the image.335

(a) (b) (c)

Figure 11: (Best viewed in color) ROC curves of the cropping detection for synthetic and real
data. The results are reported for (a) Weak, (b) Mid and (c) Strong cluster separately.

6.2. Characteristic-based Test336

In this test we assess the performance of the cropping detection with refer-337

ence to the number of lines and their MVAs. We tested the cropping detection338

on the synthetic PPs acquired in Sections 5.1 (for angles of 5◦ or 20◦, and with 2339

or 5 lines) and on the real data acquired in Section 5.2. Firstly, we compared the340

results obtained when the VPs are estimated from 5◦ and 20◦ MVAs; the per-341

formances are shown through the ROC curves in Fig. 12a and 12b. Secondly, we342

compared the results achieved using 2 or 5 lines to detect each vanishing point;343

the corresponding ROC curves are reported in Fig. 12c and 12d. In Table 4 the344
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Table 3: Cropping detection on both synthetic and real data, considering Weak (a,b), Mid
(c,d), and Strong perspective (e,f)

(a)

Synthetic Weak Perspective

CT FA
TP

(<25%)
TP

(25%-50%)
Mean

Accuracy
0.05 0.96 0.99 1.00 0.52
0.10 0.86 0.96 1.00 0.56
0.15 0.73 0.90 1.00 0.61
0.20 0.62 0.81 1.00 0.65
0.25 0.53 0.71 0.99 0.67

(b)

Real Weak Perspective

CT FA
TP

(<25%)
TP

(25%-50%)
Mean

Accuracy
0.05 0.97 0.99 1.00 0.52
0.10 0.90 0.96 1.00 0.56
0.15 0.80 0.90 1.00 0.61
0.20 0.75 0.81 1.00 0.65
0.25 0.73 0.71 0.99 0.67

(c)

Synthetic Mid Perspective

CT FA
TP

(<25%)
TP

(25%-50%)
Mean

Accuracy
0.05 0.92 0.98 1.00 0.54
0.10 0.72 0.93 1.00 0.62
0.15 0.53 0.81 1.00 0.70
0.20 0.37 0.67 1.00 0.75
0.25 0.25 0.51 0.99 0.77

(d)

Real Mid Perspective

CT FA
TP

(<25%)
TP

(25%-50%)
Mean

Accuracy
0.05 0.82 0.98 1.00 0.54
0.10 0.53 0.93 1.00 0.62
0.15 0.30 0.81 1.00 0.70
0.20 0.15 0.67 1.00 0.77
0.25 0.03 0.51 0.99 0.77

(e)

Synthetic Strong Perspective

CT FA
TP

(<25%)
TP

(25%-50%)
Mean

Accuracy
0.05 0.90 0.98 1.00 0.55
0.10 0.67 0.91 1.00 0.65
0.15 0.45 0.78 1.00 0.73
0.20 0.30 0.62 1.00 0.77
0.25 0.10 0.45 0.99 0.80

(f)

Real Strong Perspective

CT FA
TP

(<25%)
TP

(25%-50%)
Mean

Accuracy
0.05 0.83 0.99 1.00 0.58
0.10 0.45 0.88 1.00 0.75
0.15 0.22 0.70 1.00 0.83
0.20 0.12 0.50 1.00 0.84
0.25 0.07 0.31 0.97 0.82

AUCs for the two experiments have been reported to compare the overall perfor-345

mances. To be consistent with the previous test we brie�y report in Table 5 the346

mean accuracy at varying CT for each of the cases. The achieved results show347

that wider MVAs produce a signi�cant improvement in the detection rate. For348

instance, with a CT of 0.10, the mean accuracy passes from 0.79 to 0.97 on the349

synthetic data. This behaviour is con�rmed by real data: with the same CT the350

mean accuracy passes from 0.67 to 0.99. As expected, performances are slightly351

a�ected by increasing line numbers. Indeed mean accuracy improvements are352

always at most 5% for all the synthetic and real cases.353

In [19] the authors state that a CT of 0.1 and 0.15 can �t di�erent demands.354

Anyway this threshold is set regardless of image content. The achieved results355

suggest instead that a more �tting threshold could be selected according to the356
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Table 4: AUC for Characteristic based Test on synthetic and real data

(a)

Synthetic Data
CP 2 lines 5 lines ∼ 5◦ MVA ∼ 20◦ MVA

<25% 0.87 0.96 0.87 0.99
25%-50% 1.00 1.00 1.00 1.00

(b)

Real Data
CP 2 lines 5 lines ∼ 5◦ MVA ∼ 20◦ MVA

<25% 0.86 0.89 0.81 1.00
25%-50% 0.99 1.00 0.99 1.00

Table 5: Mean Accuracy for Characteristic based Test on synthetic and real data

(a)

Synthetic Data
CT 2 lines 5 lines 5◦ MVA 20◦ MVA
0.05 0.77 0.80 0.63 0.91
0.10 0.90 0.91 0.79 0.97
0.15 0.91 0.91 0.86 0.93
0.20 0.89 0.89 0.88 0.89
0.25 0.86 0.86 0.86 0.86

(b)

Real Data
CT 2 lines 5 lines ∼ 5◦ MVA ∼ 20◦ MVA
0.05 0.59 0.60 0.58 0.63
0.10 0.82 0.85 0.67 0.99
0.15 0.82 0.83 0.72 0.94
0.20 0.83 0.86 0.79 0.92
0.25 0.82 0.87 0.84 0.87

available MVA. Synthetic results show that the best performances are obtained357

with a CT of 0.20 when a 5◦ MVA is available on the image. Conversely, with a358

20◦ MVA, a CT of 0.10 should be preferred to achieve the best accuracy. Real359

data con�rmed that two di�erent thresholds should be considered according to360

MVA amplitude: 0.25 for a 5◦ MVA and 0.10 for a 20◦ MVA.361

6.3. Robustness test362

In this test we assess whether the technique is usable when the image has363

been resized or compressed. We consider a practical case where the image364

(considered in the characteristic-based test) was uploaded on Facebook at low365

quality version and then downloaded: the resolution changes from 2592× 1944366

to 972 × 729, and its size from 1.4 MB to 80 KB. 25 PPs were collected on367

the downloaded image (similarly to Section 5.2) and the cropping detection was368

applied as in the characteristic-based test. In Tables 6 and 7 we report the AUC369

and the mean accuracy at varying CT: by comparison with the results achieved370

in the characteristic-based test, we notice that performances are almost un-371

changed, with the only exception of slightly cropped images, when only narrow372

MVAs are available, in which case performance drops slightly (AUC passes from373

0.81 to 0.66.) This result once more con�rms that the MVA amplitude is crucial374
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(a) (b)

(c) (d)

Figure 12: ROC curve on synthetic and real data with di�erent cropping percentage using (a)
narrow vanishing angles and (b) wider vanishing angles, and then using (c) 2 lines and (d) 5
lines to detect each vanishing point.

Table 6: AUC for on Facebook Data

Facebook Data
CP 2 lines 5 lines ∼ 5◦ MVA ∼ 20◦ MVA

<25% 0.82 0.82 0.66 1.00
25%-50% 0.99 1.00 0.99 1.00

to determine the usability of this technique.375
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Table 7: Mean Accuracy on Facebook Data

Facebook Data

CT 2 lines 5 lines ∼ 5◦ MVA ∼ 20◦ MVA

0.05 0.61 0.59 0.51 0.71
0.10 0.76 0.80 0.55 1.00
0.15 0.82 0.81 0.69 0.94
0.20 0.84 0.81 0.73 0.92
0.25 0.82 0.82 0.77 0.87

6.4. A practical example of cropping detection376

We now show how MVA analysis can practically support the forensic analyst377

to assess whether an image has been cropped. Let us consider the images in378

Fig. 13a and 13c, downloaded from the web. The analyst estimates the PP379

on both images selecting lines that intersect with the widest possible angles.380

As a result he/she obtains that in both cases the normalized distance of the381

estimated PP from image center is anomalous (0.3875 and 0.2585 respectively).382

At �rst glance this fact leads to the conclusion that both images have been383

cropped. On the other hand, the analyst notices that the MVAs are 4.83 and384

1.21 respectively. This means that he can be much more con�dent with the385

�rst result while the PP estimation on Fig. 13c is subjected to strong noise.386

More speci�cally, with such a small MVA the estimated PP is unreliable for the387

purpose. Then the analyst concludes that Fig. 13a is probably cropped while388

no evidence can be provided on Fig. 13c by this single test.389

In �gure 13b we report the original version of 13a that can be found on the390

web, con�rming the achieved results.391

6.5. An Example of Splicing Detection392

In this Section, we provide a simple example of another possible exploitation393

of the PP for forensics purposes: Splicing detection. In such forgeries, visual394

contents are inserted into the original image in order to create a plausible com-395

posite. Even with careful editing operations, an added object will likely show396

di�erent perspective deformations with respect to the rest of the image. The397

PP could then be used to assess if distinct elements into the image have been398
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(a)

(b) (c)

Figure 13: (Best viewed in color) Two examples of cropping detection (a,c), with lines of
mutually orthogonal directions in red, green and blue. The purple dot indicates the image
center, while the cyan cross shows the estimated position of the PP. In both images the MVA
is the angle related to the vertical direction (blue lines): in (a) MVA=4.83, in (c) MVA=1.21.
In (b) the original version of (a) is presented

subjected to a di�erent projection, so to judge if the image is pristine or it is399

the result of a splicing manipulation.400

In Fig. 14 a splicing example is reported. Using the image already presented401

in Fig. 4(P1030004), we manually inserted a blue police cabin and then we ex-402

tracted lines from both the palace (red, green and blue lines) and the cabin403

(orange, light green and cyan lines). Then the PPs were estimated indepen-404

dently from the palace and the cabin (purple dots). As can be clearly seen, the405

computed PPs fall far from each other: This evidence leads to the conclusion406

that either the palace or the cabin have been maliciously added into the image.407

A similar splicing detection approach has been presented in [29], where only a408

single vanishing direction is used as clue in order to validate the visual content.409

However, relying only on a single vanishing direction may lead to erroneous410

conclusions: Observing again Fig. 14, by using the left vanishing direction only411
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Figure 14: (Best viewed in color) Splicing example: a blue police cabin was added in the left
corner of Fig. 4(P1030004). Lines of mutually orthogonal 3D direction have been extracted
independently from the palace (red, green and blue lines) and from the cabin (orange, light
green and cyan lines) � note that the vertical vanishing points are not reported due to lack
of space. Then two PPs are estimated: since they are far from each other, we can assess that
the image is manipulated.

(red and orange lines), no splicing evidence is found, since the palace and the412

cabin share the same vanishing point. On the other hand, by exploiting the PP,413

we can provide a more reliable evidence.414

7. Conclusions and Future Work415

In this paper we presented for the �rst an assessment of the reliability of416

physical-based features for forensic image authentication. In particular we fo-417

cused on the estimation accuracy of the principal point of an image and its418

application to the forensic scenario. By observing the principal point estima-419

tion accuracy in di�erent perspective conditions, we were able to de�ne a novel420

feature, the minimum vanishing angle (MVA), strictly related to principal point421

uncertainty. Then we further investigated the MVA in�uence on the estimation422

accuracy by comparing it with respect to the number of detected lines, exploited423

for the estimation of the PP. Results underlined that the use of wider vanishing424

angles leads to higher accuracy, while by employing more lines only slight un-425

certainty reductions are achieved. As shown in the case studies presented in the426

previous Sections, the application of our criteria to cropping detection allows the427
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analyst to easily exclude an image that is not suitable for the application of this428

technique. Moreover we veri�ed that on resized and compressed images � as for429

example pictures downloaded in low quality from Facebook � the performance430

only slightly decreases, provided that wide MVAs are available. Eventually, we431

showed how the principal point can be also used for splicing detection.432

In future work the proposed MVA will be exploited to analytically compute433

a likelihood score to provide more than a binary decision on the authenticity434

of the examined image. Moreover, we are planning to deeply investigate the435

relation between the MVA and the best cropping threshold to be used, in order436

to control the false alarm rate. For this purpose, automatic techniques for437

principal point localization � so as to remove the human-in-the-loop � will be438

investigated in order to perform tests on a huge amount of real data.439

Acknowledgments440

The �rst author is partially supported by GNSAGA of INdAM. This material441

is based on research partially sponsored by the Air Force Research Laboratory442

and the Defense Advanced Research Projects Agency under agreement num-443

ber FA8750-16-2-0188. The U.S. Government is authorized to reproduce and444

distribute reprints for Governmental purposes notwithstanding any copyright445

notation thereon.446

References447

[1] H. Farid, A survey of image forgery detection, IEEE Signal Processing448

Magazine 26(2) (2009) 16�25.449

[2] M. Stamm, M. Wu, K. Liu, Information forensics: An overview of the �rst450

decade, IEEE Access 1 (2013) 167�200.451

[3] G. K. Birajdar, V. H. Mankar, Digital image forgery detection using passive452

techniques: A survey, Digital Investigation 10 (3) (2013) 226 � 245.453

25



[4] A. Piva, An overview on image forensics, ISRN Signal Processing 2013454

(2013) Article ID 496701, 22 pages.455

[5] P. Ferrara, T. Bianchi, A. De Rosa, A. Piva, Image forgery localization via456

�ne-grained analysis of cfa artifacts, Information Forensics and Security,457

IEEE Transactions on 7 (5) (2012) 1566�1577. doi:10.1109/TIFS.2012.458

2202227.459

[6] M. Chen, J. Fridrich, M. Goljan, J. Lukas, Determining image origin and in-460

tegrity using sensor noise, Information Forensics and Security, IEEE Trans-461

actions on 3 (1) (2008) 74�90. doi:10.1109/TIFS.2007.916285.462

[7] B. Li, T. Ng, X. Li, S. Tan, J. Huang, Revealing the trace of high-463

quality JPEG compression through quantization noise analysis, Informa-464

tion Forensics and Security, IEEE Transactions on 10 (3) (2015) 558�573.465

doi:10.1109/TIFS.2015.2389148.466

[8] T. Bianchi, A. Piva, Image forgery localization via block-grained analysis467

of jpeg artifacts, Information Forensics and Security, IEEE Transactions on468

7 (3) (2012) 1003�1017. doi:10.1109/TIFS.2012.2187516.469

[9] E. Kee, J. F. O'Brien, H. Farid, Exposing photo manipulation with in-470

consistent shadows, ACM Trans. Graph. 32 (3) (2013) 28:1�28:12. doi:471

10.1145/2487228.2487236.472

[10] T. Carvalho, C. Riess, E. Angelopoulou, H. Pedrini, A. de Rezende Rocha,473

Exposing digital image forgeries by illumination color classi�cation, IEEE474

Transactions on Information Forensics and Security (2013) 1182�1194.475

[11] M. Johnson, H. Farid, Exposing digital forgeries in complex lighting envi-476

ronments, Information Forensics and Security, IEEE Transactions on 2 (3)477

(2007) 450 �461. doi:10.1109/TIFS.2007.903848.478

[12] H. Yao, S. Wang, Y. Zhao, X. Zhang, Detecting image forgery using per-479

spective constraints, Signal Processing Letters, IEEE 19 (3) (2012) 123�126.480

doi:10.1109/LSP.2011.2182191.481

26

http://dx.doi.org/10.1109/TIFS.2012.2202227
http://dx.doi.org/10.1109/TIFS.2012.2202227
http://dx.doi.org/10.1109/TIFS.2012.2202227
http://dx.doi.org/10.1109/TIFS.2007.916285
http://dx.doi.org/10.1109/TIFS.2015.2389148
http://dx.doi.org/10.1109/TIFS.2012.2187516
http://dx.doi.org/10.1145/2487228.2487236
http://dx.doi.org/10.1145/2487228.2487236
http://dx.doi.org/10.1145/2487228.2487236
http://dx.doi.org/10.1109/TIFS.2007.903848
http://dx.doi.org/10.1109/LSP.2011.2182191


[13] M. Iuliani, G. Fabbri, A. Piva, Image splicing detection based on general482

perspective constraints, in: Proceedings of the Information Forensics and483

Security (WIFS), 2015 IEEE International Workshop, 2015.484

[14] M. Zampoglou, S. Papadopoulos, Y. Kompatsiaris, Detecting image splic-485

ing in the wild (web), in: Proc. IEEE Int Multimedia & Expo Workshops486

(ICMEW) Conf, 2015, pp. 1�6.487

[15] T. Carvalho, H. Farid, E. Kee, Exposing photo manipulation from user-488

guided 3d lighting analysis, in: Proc. SPIE, Vol. 9409, 2015, pp. 940902�489

940902�10.490

[16] R. I. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision,491

2nd Edition, Cambridge University Press, 2004.492

[17] M. K. Johnson, H. Farid, Detecting photographic composites of people.,493

in: Y. Q. Shi, H.-J. Kim, S. K. 0001 (Eds.), IWDW, Vol. 5041 of Lecture494

Notes in Computer Science, Springer, 2007, pp. 19�33.495

[18] J. Hu, Y. Li, S. Niu, X. Meng, Exposing digital image forgeries by detecting496

inconsistencies in principal point, in: Computer Science and Service System497

(CSSS), 2011 International Conference on, 2011, pp. 404�407.498

[19] X. Meng, S. Niu, R. Yan, Y. Li, Detecting photographic cropping based499

on vanishing points, Chinese Journal of Electronics 22 (2013) Article ID500

496701, 22 pages.501

[20] G. Medioni, S. B. Kang, Emerging Topics in Computer Vision, Prentice502

Hall PTR, Upper Saddle River, NJ, USA, 2004.503

[21] B. Caprile, V. Torre, Using vanishing points for camera calibration, Int. J.504

Comput. Vision 4 (2) (1990) 127�140.505

[22] Z. Zhang, A �exible new technique for camera calibration, IEEE Trans.506

Pattern Anal. Mach. Intell. 22 (11) (2000) 1330�1334.507

27



[23] R. Toldo, R. Gherardi, M. Farenzena, A. Fusiello, Hierarchical structure-508

and-motion recovery from uncalibrated images, Comput. Vis. Image Un-509

derst. 140 (C) (2015) 127�143.510

[24] J. M. Coughlan, A. L. Yuille, Manhattan world: compass direction from a511

single image by bayesian inference, in: Computer Vision, 1999. The Pro-512

ceedings of the Seventh IEEE International Conference on, Vol. 2, 1999,513

pp. 941�947 vol.2.514

[25] C. Colombo, D. Comanducci, A. Del Bimbo, Camera Calibration with515

Two Arbitrary Coaxial Circles, in: Computer Vision � ECCV 2006: 9th516

European Conference on Computer Vision, Graz, Austria, May 7-13, 2006.517

Proceedings, Part I, Springer Berlin Heidelberg, Berlin, Heidelberg, 2006,518

pp. 265�276.519

[26] E. Guillou, D. Meneveaux, E. Maisel, K. Bouatouch, Using vanishing points520

for camera calibration and coarse 3d reconstruction from a single image,521

The Visual Computer 16 (7) (2000) 396�410.522

[27] J. Deutscher, M. Isard, J. Maccormick, Automatic camera calibration from523

a single manhattan image, in: Eur. Conf. on Computer Vision (ECCV,524

2002, pp. 175�205.525

[28] R. P�ugfelder, H. Bischof, Online auto-calibration in man-made worlds,526

in: Digital Image Computing: Techniques and Applications (DICTA'05),527

2005, pp. 75�75.528

[29] Y. Li, Y. Zhou, K. Yuan, Y. Guo, X. Niu, Exposing photo manipulation529

with inconsistent perspective geometry, The Journal of China Universities530

of Posts and Telecommunications 21 (4) (2014) 83 � 104.531

[30] D. A. Forsyth, J. Ponce, Computer Vision: A Modern Approach, Prentice532

Hall Professional Technical Reference, 2002.533

[31] R. Szeliski, Computer Vision: Algorithms and Applications, 1st Edition,534

Springer-Verlag New York, Inc., New York, NY, USA, 2010.535

28



[32] J. Ko²ecka, W. Zhang, E�cient computation of vanishing points, in:536

Robotics and Automation, 2002. Proceedings. ICRA '02. IEEE Interna-537

tional Conference on, Vol. 1, 2002, pp. 223�228 vol.1.538

[33] T. Tuytelaars, L. V. Gool, M. Proesmans, T. Moons, The cascaded hough539

transform as an aid in aerial image interpretation, in: Computer Vision,540

1998. Sixth International Conference on, 1998, pp. 67�72.541

[34] R. Toldo, A. Fusiello, Robust multiple structures estimation with j-linkage,542

in: Proceedings of the 10th European Conference on Computer Vision:543

Part I, ECCV '08, Springer-Verlag, Berlin, Heidelberg, 2008, pp. 537�547.544

[35] J. P. Tardif, Non-iterative approach for fast and accurate vanishing point545

detection, in: 2009 IEEE 12th International Conference on Computer Vi-546

sion, 2009, pp. 1250�1257.547

[36] J. C. Bazin, Y. Seo, C. Demonceaux, P. Vasseur, K. Ikeuchi, I. Kweon,548

M. Pollefeys, Globally optimal line clustering and vanishing point estima-549

tion in manhattan world, in: Computer Vision and Pattern Recognition550

(CVPR), 2012 IEEE Conference on, 2012, pp. 638�645.551

[37] C. Rother, A new approach for vanishing point detection in architectural552

environments, in: In Proc. 11th British Machine Vision Conference, 2000,553

pp. 382�391.554

[38] J. C. Bazin, M. Pollefeys, 3-line ransac for orthogonal vanishing point de-555

tection, in: 2012 IEEE/RSJ International Conference on Intelligent Robots556

and Systems, 2012, pp. 4282�4287.557

[39] P. Denis, J. H. Elder, F. J. Estrada, E�cient edge-based methods for esti-558

mating manhattan frames in urban imagery, in: D. Forsyth, P. Torr, A. Zis-559

serman (Eds.), Computer Vision � ECCV 2008: 10th European Conference560

on Computer Vision, Marseille, France, October 12-18, 2008, Proceedings,561

Part II, Springer Berlin Heidelberg, 2008, pp. 197�210.562

URL http://www.elderlab.yorku.ca/YorkUrbanDB/563

29

http://www.elderlab.yorku.ca/YorkUrbanDB/
http://www.elderlab.yorku.ca/YorkUrbanDB/
http://www.elderlab.yorku.ca/YorkUrbanDB/
http://www.elderlab.yorku.ca/YorkUrbanDB/

	Introduction
	State of the Art
	Principal Point Estimation
	Perspective Analysis
	Synthetic tests
	Tests on real images

	Image Characteristic Analysis
	Synthetic tests
	Tests on real images

	Forensic Case Studies
	Perspective-based Test
	Characteristic-based Test
	Robustness test
	A practical example of cropping detection
	An Example of Splicing Detection

	Conclusions and Future Work

