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Abstract

In this paper we propose an original framework for

the description and the subsequent recognition of ob-

jects of limited size. Although of general applicability,

the framework is presented here as a way to trace differ-

ent yet similar metal tools employed in the mechanical

constructions industry. For the purpose of object de-

scription, time-varying silhouettes of the object are ac-

quired under turntable motion and collated into a single

image. The resulting footprint matrix represents the ob-

ject in both a compact and effective way. Visual match-

ing of footprint matrices is carried out with a computa-

tionally efficient algorithm that is organized into three

distinct levels so as to benefit of a progressive suppres-

sion of the irrelevant information.

1. Introduction

A relevant problem in the mechanical constructions

industry is that of the recognition of high precision

metallic tools, mainly for traceability purposes. In fact,

dozens of different tools are usually employed for a sin-

gle job, each tool being used in many computer numeri-

cal control (CNC) machines scattered in different areas

of the workshop. These continuous displacements in-

crease the risk that the tools are mixed up and even vir-

tually lost, with a resulting economical loss. Existing

industrial solutions to this problem encompass highly

expensive and/or not flexible, invasive methods such

as direct human inspection, RFIDs, barcode labels and

laser engraving. An original and convenient alternative

solution based on computer vision is described here.

The problem is a challenging one. Indeed, even a

medium-size industry uses thousands of different tools,

most of which (e.g., reamers, drill bits, cutters—see

Fig. 1) are quite similar to each other yet by no means

identical in purpose and characteristics. In addition,

standard descriptors based on interest points such as

SIFT would not work properly for this special problem,

as the tools are highly reflective and self-symmetric.

This observation led us to devising the novel object de-

scription approach presented in this paper.

Our descriptors are obtained by observing the tool,

attached to the spindle, as it undergoes a complete 360

degrees rotation around its principal axis. We record its

image silhouettes and compress them, in the form of a

numeric signature referred to as footprint matrix. The

footprint matrix concept is very powerful, as it is a way

of capturing in 2D form the relevant 3D characteristics

of any kind of objects of limited size.

Figure 1. Examples of mechanical tools.

Pioneering work on silhouette- and contour-based

representations was done by D. Marr [6] and J.J. Koen-

derink [4]. An approximated object representation

based on generalized cylinders was proposed in [7].

Volume intersection techniques reconstruct an approxi-

mation of the shape of a 3D object, the visual hull be-

ing the best approximation of the shape of an object us-

ing the intersection generalized cone [5],[1]. A useful

representation of a set of silhouettes that takes into ac-

count the relationships with the viewpoint is captured

by the aspect graph concept [8]. Our work was mainly

inspired by the work of R.Cipolla and co-workers on

the analysis of silhouettes and of their contours, with

special attention to singularity points [3],[9],[2].



Figure 2. Setup of the acquisition system.

2. Setup

Fig. 2 shows the image acquisition setup. The me-

chanical tool is let undergo a 360 degrees rotation

around the vertical axis, that is also the principal axis

of the tool. The camera is placed at a fixed distance

from the turntable, so that the image plane and the ver-

tical axis are approximately (±3 degrees) parallel. A

colored flat light source in placed behind the object,

so as to support the accurate extraction of its contour.

Turntable speed and frame acquisition rate are both as-

sumed constant.

Figure 3. The three object descriptors: silhouette

dimensions (left), absolute frequency matrix (middle),

and footprint matrix (right).

3. Mechanical Tool Descriptors

Exterior shape is what characterizes each tool, de-

pending on the specific job the tool was created for. The

vastness of this class of objects and the continuous de-

velopment of new tools does not allow us to assume

shape-invariants. The common feature is only that all

of these tools are designed to rotate around their prin-

cipal axis. In the following, we will assume that the

tools fit well inside a cylindrical box, that their surface

is (at least locally) smooth, and that their lateral silhou-

Figure 4. Footprint matrices regarded as images.

ette is sufficient for tool discrimination. Tools are repre-

sented with three different silhouette-based descriptors

of incresing complexity (see also Fig. 3, showing the

descriptors for the tool of Fig. 1, left):

• Maximum and minimum dimensions (width,

height) — These are estimated from the max-min

bounding rectangle (MmBR) that contains all sil-

houette instances (see Fig. 3, left). The minimum

height and width are also recorded.

• Absolute frequency matrix — This matrix has the

same width and height of the MmBR. Its (i, j)
entry reports the number of times that the corre-

sponding point in the image belongs to a silhou-

ette. The absolute frequency matrix can be re-

garded as an image, as reported in Fig. 3 (middle).

• Tool footprint matrix — This matrix has as many

rows as the height of MmBR and as many columns

as the number of silhouettes. For each edge point

of the silhouette, we calculate its distance from the

closest MmBR side. For the i-th silhouette, the in-

teger distance vector (measured in pixels) thus ob-

tained forms the i-th column in the footprint matrix

(shown in Fig. 3, right). We call it “footprint” be-

cause it is the form that the tool would leave, if it

was rotated without sliding on a malleable surface.

More examples of footprint matrix are shown in

Fig. 4.

The three descriptors are ordered according to the

information that they enable to discriminate. For in-

stance, the absolute frequency matrix does not main-

tain information about the silhouette order, while the

footprint matrix does. Hence, without the third descrip-

tor, we could not discriminate between the two tools

shown in Fig. 5. For the purpose of insertion into a

database of tool descriptions, each tool is represented

using the complete set of its 360 degrees silhouettes. In

the matching phase though, even a partial description

using only a few silhouettes can be used in the place of

the full description, with a reduced matching time at the

expense of an increased matching error probability.



Figure 5. The importance of silhouette order. Al-

though different, the two shapes, if rotated by 360, give

rise to the same frequency matrix.

4. Algorithm

The matching algorithm is expounded hereafter. The

algorithm performs a search inside a closed set of N

tools fully described through their s silhouettes.

1. Consider an initial list of all N tools.

2. Consider k ≤ s silhouettes of a query tool q.

3. Construct the three descriptors of the query tool,

using its k silhouettes.

4. Use the first descriptor – Let minH(τ),
maxH(τ), minW (τ) and maxW (τ) indi-

cate respectively the minimum and maximum

height and width of a tool τ . Remove from the

original list all tools t, t = 1...N that are not

consistent with all of the following inequalities:

• maxH(t) < minH(q)

• minH(t) > maxH(q)

• maxW (t) < minW (q)

• minW (t) > maxW (q)

5. Use the second descriptor – Let Ft be the absolute

frequency matrix of the t-th tool in the database

and let Fq the query tool one. Subtracting Fq from

Ft we obtain Fqt. Remove tool t from the list if at

least one of the following is verified:

• There is at least one element of Fqt that is

negative.

• There is at least one element of Fqt that is

larger than the quantity s− k.

6. Use the third descriptor – The remaining elements

(if more than one) in the list are ranked by us-

ing the footprint matrix as follows. Consider a

multi-scale pyramidal representation of the query

footprint matrix. At each resolution scale per-

form a normalized cross-correlation of the foot-

print matrix with the (suitably scaled) one in the

database. Consider simply the mean of all these

cross-correlation values as the the score associated

to each residual element in the list. Finally, choose

as the best candidate for the matching the element

with the highest score.

Note that the use of the first and second descriptors

(steps 4 and 5 of the algorithm) helps to substantially

reduce the number of candidate solutions. The final

decision is taken by using the most complex and dis-

criminant third descriptor—the footprint matrix. The

algorithm is independent from the starting acquisition

silhouette. The complexity of the algorithm grows lin-

early with the number of silhouettes used for the query

image.

5. Results

Our turntable rotates at a constant angular velocity

of 0.1π rad/s, The camera has 2 Megapixel and a frame

rate of 15 fps. The camera is placed at about 20 cm from

the object rotation axis, with the visual axis forming an

angle of 90± 3 degrees with the turntable rotation axis.

Since the diameter of our tools is typically less than 1
cm, perspective distortions are not so relevant, and a

weak perspective projection can be assumed. We use a

flat blue light to facilitate object/background separation

and countour extraction. 210 silhouettes were extracted

for each tool, representing a full 360 degrees rotation.

The number of silhouettes chosen for the query varied

with the experiments.

Matching experiments are shown using the 9 most

similar tools out of a set of 87 tools. These 9 tools

were found to be undistinguishable using only the first

and second descriptors. Hence, they were were further

matched using the third descriptor (footprint matrix).

Tables 1 through 3 report on the results of the score

ranking phase using the footprint matrices. Score values

represent averages over 10 searches with the same query

tool. In each search, the query tool was removed from

its support, and then put in place again. Results are rep-

resented in terms of a 9× 9 matrix—tools are indicated

by the capital letters A through I. Nonzero scores are

integers in the range [1, 1000], where a value of 1000

represents a perfect match. A zero entry in the table

means that cross-correlation at coarse scale was below

a threshold of 400. Table 1 shows the matching results

obtained by considering a full 360 degrees query tool

rotation, for a total of 210 silhouettes. Tables 2 and 3



show instead results obtained by limiting the query tool

rotation to 170 and 90 degrees, for a total of 100 and 50

silhouettes respectively.

Results show that for the selected tool subset a com-

pletely satisfactory (100%) recognition performance is

obtained. More importantly, the second best matching

score is quite separated from the first, thus confirming

the good discrimination power of the footprint matrix

descriptor and making it it likely that the recognition

rate will maintain high as the size of the database grows

larger. Finally, results show that a graceful degradation

in recognition performance is to be expected by reduc-

ing the number of query silhouettes during matching.

A B C D E F G H I

A 962 689 0 0 0 702 0 0 0

B 688 970 0 0 0 908 0 0 0

C 0 0 981 0 0 0 0 0 741

D 0 0 0 934 699 0 0 0 0

E 0 910 0 696 944 0 0 0 0

F 707 907 0 0 0 971 0 0 0

G 0 0 0 0 0 0 966 0 0

H 0 0 0 0 0 0 0 979 0

I 0 0 734 0 0 0 0 0 983

Table 1. Results with k = s = 210 silhouettes for

query tools A—I.

A B C D E F G H I

A 825 692 0 0 0 700 0 0 0

B 702 946 0 0 0 906 0 0 0

C 0 0 759 0 0 0 0 0 746

D 0 0 0 776 744 0 0 0 0

E 0 0 0 736 943 0 0 0 0

F 732 913 0 0 0 922 0 0 0

G 0 0 0 0 0 0 911 0 0

H 0 0 0 0 0 0 0 929 0

I 0 0 733 0 0 0 0 0 944

Table 2. Results with k = 100 silhouettes for query

tools A—I.

A B C D E F G H I

A 816 695 0 0 0 693 0 0 0

B 766 945 0 0 0 898 0 0 0

C 0 0 751 0 0 0 0 0 739

D 0 0 0 741 758 0 0 0 0

E 0 0 0 779 926 0 0 0 0

F 778 911 0 0 0 905 0 0 0

G 0 0 0 0 0 0 908 0 0

H 0 0 0 0 0 0 0 845 0

I 0 0 693 0 0 0 0 0 944

Table 3. Results with k = 50 silhouettes for query

tools A—I.

6. Conclusion and future work

In this paper we have presented novel algorithms for

describing and matching objects that are difficult to rec-

ognize using standard descriptors such as SIFT. As an

application of our theory, we have shown the case of

recognition of mechanical tools used in CNC machines,

an important traceability problem in real industrial prac-

tice.

The descriptors are constructed by letting the objects

rotate on a turntable, and recording its time-varying sil-

houettes. The most complex and discriminative descrip-

tor thus obtained is the so called “footprint matrix,” em-

bedding the whole silhouette collection into a single

rectangular array.

Results are encouraging, also taking into account

that a far from ideal setup was used for the experiments.

Future work will address working with larger

databases (with, say, more than 1000 tools), devising

improved strategies for fast footprint matrix compari-

son, relaxing the setup requirements (e.g., by letting the

camera observe the turntable from any angle), and test-

ing the description framework also with different real-

world object typologies.
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