8

Interfacing through Visual Pointers
C. Colombo, A. Del Bimbo and S. De Magistris

Abstract

A key issue in advanced interface design is the development of friendly
tools for natural interaction between user and machine. In this chapter,
we propose an approach to non intrusive human-computer interfacing in
which the user’s head and pupils are monitored by computer vision for
interaction control within on-screen environments. Two different visual
pointers are defined, allowing simultaneous and decoupled navigation
and selection in 3D and 2D graphic scenarios. The pointers intercept
user actions, whose geometry is then remapped onto the environment by
a drag and click metaphor providing dialogue with a natural semantics.

8.1 Introduction

In the last few years, a huge effort has been made towards building ad-
vanced environments for human-machine interaction and human-human
communication mediated by computers. Such environments can im-
prove both the activity and satisfaction of individual users and computer
supported cooperative work. Apart from some obvious implementation
and design differences, virtual reality [262], augmented reality [318] and
smart room [246] environments share the very same principle of provid-
ing users with a more natural dialogue with (and through) the computer
with respect to the past. This is obtained through a careful interface
design involving interface languages mimicking everyday experience and
advanced interaction techniques.

Recently, the simultaneous growth of computing power and decrease
of hardware costs, together with the development of specific algorithms
and techniques, has encouraged the use of computer vision as a non

135

136 Colombo, Del Bimbo and De Magisiris

intrusive technology for advanced human-machine interaction. Exper-
iments using computer vision for gesture interpretation tasks such as
lip-reading, recognition of facial expressions, and head motion under-
standing [175, 119, 14] have been carried out. Vision-based interfaces
allow user gestures and actions to be intercepted and used to support in-
teraction in a wide semantic range. For example, in [286] a vision-based
hand gesture interpretation technique is used to develop an interface
based on sign language, where each sign is related to a specific hand
configuration pattern which must be known a priori to the user. Such a
rich interaction semantics at the user level is not always desirable, as it
may limit the naturality of the dialogue.

In this chapter, we propose a vision-based technique to communi-
cate with a computer through pupil shifts and head motion. A friendly
interface is obtained by stressing the continuous-geometric aspects of
interaction and supporting natural languages based on visual inspection
and selection. Interaction via head and eyes can be effective for both
disabled users affected by severe limb motor pathologies and general
users requiring non-intrusive interaction tools. The technique, which is
presented in the context of a virtual reality environment provided with
hypertextual access, can be easily adapted to other tasks and scenarios,
and support interaction in multimedia, videoconferencing, telepresence,
usability monitoring, and augmented reality environments.

In our approach, a set of image features encoding head and eye posi-
tion is continuously tracked via computer vision. The features are then
remapped onto the interaction environment, as the result of a geometric
and semantic interpretation of user action. The location currently ob-
served and the user’s interest are inferred by monitoring head and pupil
displacement and geometric persistency. This allows us to replicate the
two basic functions of dragging and clicking in 2D and 3D with a pair
of wisual pointers, according to a paradigm which allows pointing and
navigation (geometric), and selection (semantic) actions.

8.2 Visual pointers

As shown in Figure 8.1, our operating context is composed by a camera
and an on-screen multi-window environment. User actions are the result
of a change of interest, due either to the low-level visual content of
the environment (color, texture, etc.) or to some purposive, high-level
user task (context-switching while browsing a hypertext, ameliorating
interaction through a viewpoint change, exploring the scene, etc.).

Interfacing through Visual Pointers 137

Fig. 8.1 The basic elements of vision-based interaction: environment, user,
and camera.

8.2.1 Geometry

To intercept shifts of interest, which involve the user’s visuo-motor sys-
tem, a vision-based interaction tool is designed to track and process si-
multaneously the displacements of both the head — rigid body in space,
six degrees of freedom (DOF) — and the eyeball — two DOF, orienta-
tion of the visual axis in spacet — subsystems with respect to some fixed
reference frame. Such a tool is equivalent to the combination of a 3D
pointing device and a 2D pointer, respectively. As the two subsystems
are kinematically independent, the associated pointers can also be made
independent one from the other by decoupling the measurement of head
and eyeball displacements through computer vision.

From the geometric viewpoint, the basic elements of the interaction
(camera’s image plane, screen and user’s face) can be modeled as planar
surfaces in space. We also model the visible portions of the user’s eye-
balls, actually pseudo-spheres, as planar surfaces, and regard any gaze
shift related to an eyeball rotation as a translation of the pupil in the
face plane. Let A, B and T’ denote the screen, user and camera planes
respectively, and fix the local frames ¢, 3 and v as in Figure 8.2.

A first geometric aspect of the interaction concerns the head’s relative
geometry (position and orientation) w.r.t. a given reference frame p.
This is encoded in the linear transformation between the coordinate
1 As for the eyeball DOF, we will actually refer to the intersection of the visual axis

giving the direction of gaze, with the screen plane providing the location actually
observed.

138 Colombo, Del Bimbo and De Magisiris

SCREEN p

REFERENCE

Fig. 8.2. Visual interaction: geometric aspects.

representations of a generic point in space p in the - and p-frames.
Using homogeneous coordinates for p, such a transformation can be
compactly expressed by a 4 x 4 matrix #T s.t. [°p™ 1]* = T [*p” 1]".
As changes of frame can be composed linearly, the p — 3 transformation
can be reconstructed from the p — 4 and v +— (transformations:

AT = ATT | (8.1)

thus letting the camera come into play as an element of the interaction.
The T transformation is time-independent, as long as the camera is
fixed, while the 2T transformation does depend on the current position
of the user’s head.

A second aspect of the interaction involves user’s eyeball movements
and screen inspection. As the result of an eyeball shift, a specific location
of the screen is pointed, and its visible content is projected through the
pupil onto the highest-resolution area of the retina, the fovea. Thus,
geometrically speaking, we can regard at each instant the pupil’s position
in the face plane, b, as the perspective image of the observed screen
point a, i.e. b = £ f(a), with 5f : A — B a nonlinear projection map
depending, among other parameters, on the entries of 2T. The relative
distance between the user and the camera is such that, in our context,

Interfacing through Visual Pointers 139

conditions are met to approximate the perspective camera with an affine
camera model [232]. This allows us to say that a linear backprojection
map ﬁh_l =42h : B — A (with £h ~ Zf) exists which brings pupil
positions to screen locations. The same reasoning can be applied to
define the camera-to-face backprojection £h : I' — B, and write the map
#+g between camera-projected pupil positions ¢ and screen locations a
as a composition of linear maps:

f2g=fthofh:T— A . (8.2)

Such a camera-to-screen backprojection map is a linear approximation
to a perspectivity (the “picture of a picture” [232]) and, as the product
of two maps which involve the user frame 3, it is time-dependent.

The transformations of egs. (8.1) and (8.2) embed the information
used by our 3D and 2D pointers, respectively. In Section 8.3 we show
how to compute and update such information based on image data.

8.2.2 Semantics

The dialogue semantics currently implemented in our visual interface is
based on a drag and click metaphor, which lets the user interact with
the environment with his head and eyeballs to perform navigational,
pointing and selection actions as with conventional pointing devices.

Explicitly, eyeball and head displacements with respect to a fixed ref-
erence are interpreted as pointer drags, or navigational actions. Pointers
can also trigger a selection action (click) as they persist in the neighbor-
hood of a geometric configuration for a convenient time interval. Since
the production of discrete events is reduced here to the on-off mecha-
nism of time thresholding for selection, pointers have basically the same
semantic expressivity of a 1-button mouse. This design choice virtually
demands the whole burden of expressivity from the interaction environ-
ment.

The semantics implemented attempts to assign a natural meaning
to the user’s head and eye movements (basically head translations and
rotations and pupil shifts of fixation) so that even a naive user can
feel comfortable interacting with the system. The head can be used to
navigate or to displace objects (drag) in the environment and also to
select, or “freeze,” a 3D scene of interest (click). Eyeball drags, which
take into account a displacement within the scene, can be used e.g., for
on-screen drawing or exploration, and eyeball clicks to select relevant
2D information.

140 Colombo, Del Bimbo and De Magisiris

8.3 Implementation

This section discusses the modeling and measurement aspects of our
drag and click approach to vision-based interaction.

8.3.1 Projection and user modeling

Affine projection model. The relative geometry between any two
frames is described by six DOF. For example, the transformation be-
tween the user and camera frames can be expressed as

R(7,0,¢) t

T —
s 0 0 0 1 ’

(8.3)
where ¢ = [t;13t3]" is a translation 3-vector, and R(7,0,¢) is a 3 X 3
rotation matrix, completely defined by the three angles 7 (tilt), o (slant)
and ¢ (orientation). Specifically, if each of the interaction frames is
chosen with its third axis normal to the associated plane (see again
Figure 8.2), then o € [0,7/2] is the angle between the face and the
image planes, vanishing identically if the two planes are parallel.

Affine perspective projectiont of a face point onto the camera plane,
Zh, can be described in terms of a translation 2-vector h, and a 2 x 2
projection matrix

H— x Cf)ST —sinT| | —cosoc O] [sing —‘cos¢> , (8.4)
sinT cosT 0 1| [cos¢p sing

which is the composition of two planar rotations by 7 and ¢ — 7/2, of
an anisotropic scaling by cos o along a specific image direction, and an
isotropic scaling of the imaged pattern by a factor k proportional to the
camera’s focal length [86].

User features being tracked. Head displacements and pupil posi-
tions can be estimated at one time by tracking the visual appearance of
the users’ eyes. Indeed, the ezternal contour of the eye, which is fixed
to the head], can be related to head displacements, while the internal
1ris contour, which is concentric with the pupil, moves according to user

t We assume here that all intrinsic parameters of the projection, and especially the
pixel size ratio, have their ideal values. In such a case, the affine projection is a
weak perspective [232].

Our rigidity constraint assumes that any change of the visual appearance of the
eye contour is related to a head displacement. At a very short time scale, even
a nonrigid change of facial expression — say, passing from normality to utmost
stupor — influences the external eye appearance. However, at longer time scales
only geometric-driven changes are significant.

++

Interfacing through Visual Pointers 141

pointing actions (eyeball shifts). Analyzing separately the pupil point-
ing and head displacement characteristics of user actions allows us to
adopt a two-step eye tracking approach:

(1) Track the external eye contour. This determines a search bound
for the pupil’s position in the image.

(i1) Track the pupil inside the search bound. This is motivated by the
physiological constraint that the pupil must always lie inside the
external eye contour.

pupil

partial occlusion

S~ __ iris: ellipse

external eye: semi-ellipses

Fig. 8.3. Modeling the left and right eyes.

Image measurements for head tracking and pupil detection are ob-
tained by deforming a reference elastic template so as to adapt it to
current image data. Let us assume that the reference frame p is the
(B-frame at initialization time (¢ = 0), i.e. p = B(0). Let’s also assume
that p and v have mutually parallel third axes, i.e. (0) = 0. Then,
by eq. (8.4), the reference template models a frontoparallel view of the
eyes, possibly translated by h(0), and scaled and mirrored w.r.t. the face
plane content by

H(0) = (0) [(1) _01] . (8.5)

The template is composed of two sub-templates, which capture the char-
acteristics of the user’s external eye and iris, respectively (Figure 8.3).
The external eye sub-template features two semi-ellipses sharing their
major axis, thus depending on six parameters, namely the common ma-
jor axis (a), the two minor axes (b, ¢), the ocular center image coordinates
(d, €), and the common orientation (f). A circle, parameterized through
the coordinates of its center (%, j) and its radius (k), is used for the iris

142 Colombo, Del Bimbo and De Magisiris

sub-template. Notice that part of the iris is usually occluded by the
eyelids: this fact has to be explicitly taken into account in the tracking
strategy.

8.3.2 Sensing the user

Template initialization. At system startup, a raw estimate of the
eye location and shape in the image is derived, and the template is
accordingly initialized. To speed up processing, the two image regions
containing the eyes are first roughly located by means of edge dominance
maps, i.e., maps which take into account the dominance of brightness
gradient in a given direction [63]. Figure 8.4 illustrates the two-step
procedure for automatic eye localization.

g, =
e T Vi
H,)

Fig. 8.4. Eye localization using dominance maps.

Once the regions including the eyes are found, the template is adjusted
against image data by an energy-minimization criterion (see e.g., [337]).
A quadratic energy term, including the 9 = 6 + 3 template parameters
per eye, is minimized, so that the template is relaxed inside the eye
regions by gradient descent. After relaxation, the deformable template
is used to initialize the run-time tracker, a lightweight process which
allows for faster tracking behavior than template relaxation.

Tracking the external eye. The tracker is modeled after the external
eyes only. Its image shape is controlled by a discrete set of points, which
are initialized soon after template relaxation, by uniformly sampling the
external eye contours. At run-time, the tracker parameters are refined
and updated by means of a simple tracker-to-image fitting approach,
based on least squares and the extraction of brightness edge points (Fig-
ure 8.5). Thanks to our affine projection model, the tracker can be made
quite robust by allowing it to deform only in an affine fashion.

Interfacing through Visual Pointers 143

Explicitly, let the tracker instance at a generic time ¢ > 0 be {x;(2)},

7 =1

... N, let its centroid be #5(t) and let the reference tracker be

{2:(0)} with centroid #5(0). Template tracking proceeds as follows:

(i)

(iii)

(iv)

Prediction. In an image neighborhood of the previous tracker
instance (time ¢t — 1), a local search of edge points (brightness
gradient maxima) takes place at each of the N tracker points and
along normal directions to the tracker itself. The set {Z;(¢)}
of edge points (predicted set) is computed by means of a 5-
point, recursive coarse-to-fine algorithm based on finite differ-
ences [100]. Search intervals along each direction are adaptively
adjusted based on the previous tracking results.

Least squares fit. The LS approximation of the new tracker cen-
troid is simply the centroid (average point) of the predicted set
evaluated in the previous step, i.e. Zz(t) = %ZZ z;(t). A2x2
matrix i(t) is also evaluated via LS as the best approximation
of the affine transformation about the origin between the pre-
dicted set and the reference template. This is done by minimizing
the quadratic cost Y . |[(2:(t) — Za(t)) — i(t) (2:(0) — 25(0))])?
by solving the linear homogeneous system obtained by partial
differentiation w.r.t. the unknown four parameters.

Filtering. The six parameters of the affine image transformation
(i(t), Z5(t)) are smoothed using a recursive filter. For the generic
parameter p, the filtered value is 5 (t) = wy, p(¢)+(1—wp) (¢t —1).
To achieve a better control of the tracking process, a different
filter gain w, € [0, 1] can be assigned to each parameter.

Affine projection. Once the affine transformation (f(t), Z5(t)) is
obtained, the new tracker instance is finally computed as @;(t) =
zs(t) + f(t) (2:(0) — 25(0)) for all ¢, with ®5(t) = Zx(¢). This
last step ensures that at each time ¢ > 0 the tracker is an affine-
transformed instance of the reference tracker, initialized at ¢ = 0.
Besides, such a tracking approach is independent of the specific
tracker being used: different eye shapes can be tracked by sim-
ply changing the shape of the reference template — say, using
parabolic arcs instead of elliptic arcs.

Locating the pupil. Once the new external eye position is found, it

is necessary to search for the current iris shape and position inside the

new tracker contour. This is done according to a technique akin to the

one used before, but also different from that in some significant points:

144 Colombo, Del Bimbo and De Magisiris

tracker point

tracker point

W////

—
Y
\ 7{ _ }‘ e
adaptive symmetric
search range

not accepted

ocular center

Fig. 8.5. Affine-deformable eye tracker and search of iris candidate points.

o Affine model. To deal with generic face views with nonzero slant
anglest which would produce an elliptic-shaped iris, an elliptic iris
tracker is considered. This is initialized with the reference circular iris
obtained after template relaxation.

e Occlusions. To avoid erroneous results due to possible partial iris
occlusions, the edge points belonging to the external eye tracker are
automatically excluded from LS fitting with the iris tracker; in this
way, an external contour point is not taken into account as a predicted
iris point y = [z y]*. To avoid occlusions, we use edge search lines
which are radial paths connecting external eye tracker points with
the tracker’s centroid: the search proceeds inwards and, as shown in
Figure 8.5, only negative gradient points are taken into account.

e Matching. The steps of fitting and affine projection are simultaneous.
This is obtained by explicitly using the elliptic tracker analytic expres-
sion into the objective function. Specifically, the new raw ellipse pa-
rameters are extracted by fitting predicted points with a generic conic
via LS, and then constraining the conic to be an ellipse. That is, found
the generic five conic parameters ¢; which minimize the squared error
> [':Eiz +e1 2y +caYl +caZi+eali + 05] 2 , these are expressed in
terms of ellipse center, major and minor axes, and orientation [85].

After the filtering step, the current center of the iris is taken as the
new location of the pupil and used to update the 2D pointer.

t This proves useful when the intrinsic camera parameters such as the pixel size
ratio are not perfectly compensated.

Interfacing through Visual Pointers 145

8.3.3 Controlling the environment

Using the 3D pointer. Head displacements relative to the reference
frame can be estimated from a comparison between the current and
reference trackers. At any time ¢ > 0, the tracker is obtained by a
camera projection of the face plane when the face frame is 3(t); fol-
lowing the notation of Subsection 8.3.2, we denote this projection as
(H(t), h(t)), where the generic tracker is related to the reference tracker
through the affine transformation (L(t), #5(t)) s.t. z(t) = h(t) and
L(t) = H(t) H~*(0).

If we can assume frontoparallel interaction, i.e., that the user’s face
remains almost parallel to the screen during the whole interaction timef,
then o(t) ~ 0 Vt > 0,

H— x [—sind) cosd)]

cos¢ sing (8.6)

and rotations are fully described by the orientation angle ¢(t) in [0, 27],
initialized to ¢(0) = —7/2 to satisfy eq. (8.5). Notice that during fron-
toparallel interaction the head DOF are reduced from six to four —
namely, a translation 3-vector and a rotation in the face plane. The
head DOF can be conveniently referred to the p-frame as £(0) — ¢(¢) and
¢(t), and related to 2D quantities as follows:

o) - =1/e0) (| O] =22 ["]) 5 e

[sin ¢(t) Cf)sd’(t)] e (8.8)
—cos¢(t) sing(t) £(t)
Given focal length A and an estimate of L(t), h(t) and h(0), from
eq. (8.8) it is possible in principle to recover rotation ¢(¢) and rela-
tive scaling k(0)/k(t): the latter can be used into eq. (8.7) to recover
translation parameters up to an unknown scale factor} 1/x(0).
However, we prefer to use a more direct approach to evaluate rela-
tive scale and rotation from the current and reference trackers — see
Figures 8.6 (a through d). The approach does not involve eq. (8.8) but
instead exploits the ocular centers as located in the image. Observe in
fact that relative scaling can be estimated as the interocular distance
ratio §(0)/6(¢) (Figure 8.6, c). Similarly, as shown in Figure 8.6 (d), the

t The frontoparallel is a very natural way to stand in front of a computer, as it is
optimal in terms of ergonomics.

} This indetermination originates from modeling not the eyes themselves in the face
plane but, instead, their image appearance.

146 Colombo, Del Bimbo and De Magisiris

relative inclination of the line connecting the ocular centers can be used
to estimate rotation.

The estimated 3D parameters correspond one-one to the four basic
head displacements which the user can mix together during frontopar-
allel interaction.

e =L
;_y/: s

T LT S oy Y
< &0) :
(@ Reference (b) Trangations

0

..

0)

(€) Approaching movements (d Rotations

Fig. 8.6. The four head DOF's considered for the experiments.

Calibrating and using the 2D pointer. Remapping the 2D pointer
has a more quantitative nature. The key idea for such a pointer is in fact
to be able to know where the user is actually looking in the screen. Such
a strategy is usually implemented using precise but otherwise intrusive
infrared light equipment [159, 154] and allows the eye pupil to be used
as a 2D mouse.

Having denoted the affine eye projection map by (K, k), having de-
fined a new camera projection map as (H', h'), with h' the projection of
the ocular center of the eye where the pupil is locatedf, and having ex-
pressed image and screen points ¢ and a as 2-vectors using their native
coordinate frames v and « respectively, it holds:

“a=M"c+m |, (8.9)
1711 ! -1
where M = [H K] and m =-Mh — K " k.
1t Such a projection is also the centroid of the external eye sub-tracker including the

pupil’s image. Vectors h of eq. (8.7) and A’ differ by the centroid of the remaining
sub-tracker.

Interfacing through Visual Pointers 147

Fig. 8.7. 2D calibration. Left: Calibration grid. Right: Remapped points.

The camera-to-screen map (M, m) involves time-dependent quanti-

ties, some of which — e.g., the distance from eye to screen and eye focal

length — are not known or difficult to know. Nevertheless, this trans-

formation can be estimated at startup via a plane-to-plane calibration

procedure:

(i)

Observation. A set of M > 6 image observations of pupil po-
sitions is collected and recorded, obtained by tracking the pupil
while letting the user execute a sequence of gaze fixations on M
given screen locations. Figure 8.7 (left) shows the case M = 9,
where the locations to fix are organized in a 3 x 3 calibration grid
covering the entire screen. To reduce errors during this phase,
each new observation is obtained as an average of subsequent
image measurements.

Estimation. The affine model is then estimated using data and
observations, as the LS solution of an overdetermined system ob-
tained from eq. (8.9). LS computations are carried out in two
steps, by first computing data and observation centroids *ay and
Vep and estimating the matrix M from (*a—%az) = M (Ye—"esz),
and then obtaining the translation as m = “ay — M 7¢;.

At run-time, pupil positions in the image are remapped onto the screen

using the calibrated map. Figure 8.7 (right) shows the qualitative results

of a test on calibration accuracy. In the test, the user is asked to fix

the calibration grid points successively, while the corresponding image

pupil positions, suitably averaged, are remapped onto the screen using

eq. (8.9). The few remapped points in the figure which are halfway

between grid crossings are due to user eye movements between successive

fixations.

148 Colombo, Del Bimbo and De Magisiris

Quantitative results on the same calibration test are shown in Ta-
ble 8.1. This reports the average and maximum mismatch between the
set of calibration points (“ground truth”) and the remapped points both
in the two coordinate directions and in magnitude. Magnitude errors
provide us with a resolution limit for our 2D pointer, which must be
taken into account in the design of the graphic interface. To reduce map
reconstruction errors during calibration, head motions can be compen-
sated by normalizing the image plane observations w.r.t. the reference
ones. Similarly, the calibrated map can be updated at run-time based
on current visual data [87].

CALIBRATION ACCURACY Error onx FError ony Uncertainty radius

Average (mm) 6.23 10.69 12.38

Mazimum (mm) 17.51 19.93 26.53

Table 8.1. Calibration accuracy.

Pointer timing. Choosing the right threshold value is of key impor-
tance for a good balance between speed of operation and naturality of
interaction. If the threshold value is too low, then every action is in-
terpreted as a click command, an undesirable situation usually referred
to as Midas touch [159]. A good dwell time for the 2D pointer, which
takes into account the high mobility of the pupil, is 1 s, which on the one
hand guarantees a fast response, and on the other limits the occurrence
of false alarms. Since head motions are slower, a time threshold about
three times longer can be used for the 3D pointer.

A second timing mechanism is implemented in the interface, avoid-
ing the occurrence of “interference” between the pointers. Consider for
example the case of a 3D click, which occurs when the head persists in
a fixed position for one second or more. If, in the same time period,
the pupil is also fixed, then a 2D click event is generated, which is most
probably involuntary. To solve the interference problem, the 2D and 3D
pointers are decoupled, by letting the pupil be actually remapped only if
the head is in a suitable neighborhood of its reference position — i.e., if
the current tracker is not too different from the reference tracker.

Interfacing through Visual Pointers 149

8.4 Interface

An interface has been implemented to support interaction using our
visual pointers within a virtual museum containing a digital collec-
tion of canvases by famous 20th century artists such as Klimt, Picasso,
Modigliani, etc. The virtual environment is complemented by a 2D on-
screen hypertext providing the museum with on-line catalogue facilities.

The graphic interface uses the OpenGL graphic libraries and runs on
a Silicon Graphics Indy workstation (MIPS R4000/R4010 with 100 MHz
clock). The vision subsystem software also runs on the Indy, and gets
raw image data through a VINO frame grabber board from an off-the-
shelf B/W camera.

To achieve natural interaction, the loop delay must be short enough
to provide the user with feedback about his latest action. The overall
interaction loop time for our system is the sum of the time spent doing
visual computations and graphic environment manipulation. Initializat-
ing visual algorithms involves automatic eye extraction and template
initialization and takes around 450 ms to complete. At run-time vi-
sual tracking runs almost at video rate (50 ms) instead, using N = 64
sampling points for both external eye and iris search. Without special
hardware for graphics acceleration, most of the loop time is taken by
graphic remapping (some hundreds ms at an intermediate image qual-

ity).

3D viewpoint control and navigation. Examples of a typical inter-
action session using the 3D pointer are illustrated in Figures 8.8 and 8.9
(time flows top to bottom and left to right). The screen content and a
mirrored image of the user’s eye region are shown, in order to emphasize
the relationship between user action and environment changes.

Figure 8.8 shows a zoom-in sequence. Zooming is obtained by ap-
proaching the screen with the head; this causes the painting in the mid-
dle of the wall to be displayed at full resolution. A new viewpoint can
always be selected by head fixation. However, in this case the user de-
cides to go back to the initial view by moving away from the screen (last
image of the sequence).

Another kind of viewpoint adjustment can be obtained by head ro-
tation around the visual axis (Figure 8.9). This proves to be useful
when interesting on-screen features do not have the right orientation.
Thanks to the remapping semantics, a clockwise head rotation produces
a natural counterclockwise rotation of the environment.

150 Colombo, Del Bimbo and De Magisiris

Fig. 8.9. 3D pointer: rotation sequence.

Interfacing through Visual Pointers 151

Viewpoint changes are produced by navigational actions correspond-
ing to head translations parallel to the screen. This excludes, in princi-
ple, the possibility of executing head pan movements, as the constraint
on frontoparallel interaction would not be met. For example, panning
the head leftwise would be interpreted in our interface as a rigid left-
ward head translation (correctly remapped as a rightward environment
shift), and a decrease of interocular distance, incorrectly remapped as a
zoom-out. Thus, the correct image resolution must be recovered by an
additional zoom-in action.

Besides, notice that proper semantics must be introduced to generate
rotations in the environment using our 4-DOF pointer. In our interface,
if a side museum wall is reached by a translational movement, an envi-
ronment rotation is automatically generated, so as to show the paintings
on that wall.

Fig. 8.10 2D selection. The 1st menu level is accessed from level 0 by steadily
pointing the eye to a specific painting.

2D inspection and selection. Once a specific viewpoint has been se-
lected by head rotation, the user can go back to the reference position,
inspect the on-screen scene, and possibly learn more about a given paint-
ing in it, or about its author, by selecting a canvas by pupil pointing
(Figure 8.10).

152 Colombo, Del Bimbo and De Magisiris

An important aspect of the interface concerns the screen regions which
can accept eye-gaze commands, which we refer to as active windows.
At menu level 0, as commands are issued directly by fixing a canvas,
each canvas is an active window. At menu level 1 (Figure 8.10, bottom
right), the screen is partitioned in two regions. The left-hand region
has six active windows, four of which allow access to information about
the author, the historical period, selected and related paintings; the
remaining two windows are used for paging control (“back,” “next”).
The right-hand side of the screen contains output information, and as
such it can be fixed by the user without timing constraints (passive
window). As the first menu level is accessed, the passive window is
filled by default with the painting which was selected in the museum.
Figure 8.11 shows the process of getting information about the author
of the painting: the “author” button is repeatedly fixed, and this causes
the author information to be pasted into the passive window to be read.

Fig. 8.11. 2D selection: second menu level.

The spacing and size of active windows strictly depend on the mag-
nitude of the pupil remapping error (see again Table 8.1). The average
pointing error can be used to properly design the 2D interface and size-
up active windows in order to reduce the risk of false alarms during
slightly incorrect pointing.

8.5 Innovation

In this chapter, we have presented an approach to advanced human-
machine interfacing based on computer vision and computer graphics.
The key idea is to use computer vision to develop non intrusive pointer
devices based on user head and eye motions, and to couple them with
a simple drag and click semantics for interaction in graphic 2D and 3D

Interfacing through Visual Pointers 153

environments. Basically, the pointers capture significant parameters of
user action, which are then remapped onto the environment. The main
operations which the user can perform are environment exploration and
data selection. Head tracking is used to interact with a 3D environment,
while eye pupil tracking allows to control interaction with 2D-based in-
terfaces. To implement the 3D pointer, we continuously track the image
of the external part of the user’s eyes, and use its deformations to in-
fer head motion parameters. Concerning the 2D pointer, we propose
an approach derived from infrared technology applications, and novel to
computer vision, i.e., to track eye pupils so as to measure gaze point-
ing actions in terms of observed screen points rather than simply as
directions in the 3D space.

Some directions for future work with our visual pointer technique can
finally be outlined. One way to cope with uncertainty in measurements
and human intentions alike is to use adaptive interfaces. Such interfaces
should cooperate with the user in making a decision, either by allowing
him to refine a command, or by suggesting a series of alternatives dur-
ing interaction. The interaction framework can be extended to deal with
remote environments. Indeed, while interaction with the on-screen envi-
ronment always takes place locally, the displayed scene needs not to be
necessarily a graphic environment, but could be e.g. the output of a re-
mote, possibly motorized, camera. Thus our approach can be effectively
extended to applications such as teleconferencing, telepresence and tele-
operation. Other interesting applications are in the field of augmented
reality. Think of replacing the screen plane with a real-world plane, say
a desk, an office wall or some other work panel. The approach can be
easily adapted to this new scenario. Another extension of the approach
is to allow for richer semantics at the user level. That is, besides the
basic interaction capabilities offered by our approach, the user could be
provided with other means of interfacing with the machine. A way to
extend semantics naturally in a computer vision context can be that of
interpretation of gestures and expressions.

(87]

[100]

[119]

[154]
[159]

[175]

Bibliography

A. Azarbayejani, T. Starner, B. Horowitz, and A. Pentland. Visu-
ally controlled graphics. IFEE Transactions on Pattern Analysis
and Machine Intelligence, 15(6):602-605, 1993.

R. Brunelli and T. Poggio. Face recognition: Features versus tem-
plates. PAMI, 15(10):1042-1052, October 1993.

C. Colombo, S. Andronico, and P. Dario. Prototype of a vision-
based gaze-driven man-machine interface. In Proc. IEEE/RSJ
International Conference on Intelligent Robots and Systems
IR0OS’95, pages 188-192, 1995.

C. Colombo and J.L. Crowley. Uncalibrated visual tasks via linear
interaction. In Proc. 4th European Conference on Computer Vision
ECCV’96, pages 583-592, 1996.

C. Colombo and A. Del Bimbo. Interacting through eyes. Robotics
and Autonomous Systems, 19(3-4), 1997. (To appear.)

R. Curwen and A. Blake. Dynamic contours: Real-time active
splines. In A. Blake and A. Yuille, editors, Active Vision, chapter 3,
pages 39-57. MIT Press, 1992.

Essa, I., Pentland, A., (1994) A Vision System for Observing and
Extracting Facial Action Parameters, In Proc. Computer Vision
and Pattern Recognition, pp. 76-83, Seattle, WA., June 1994.
T.E. Hutchinson. Computers that sense eye position on the dis-
play. IEEE Computer, 26(7):65-67, 1993.

R.J.K. Jacob. What you look at is what you get. IEEE Computer,
26(7):65-66, 1993.

R. Kaucic, B. Dalton, and A. Blake. Real-time lip tracking for
audio-visual speech recognition applications. In Proc. 4th Furo-
pean Conference on Computer Vision ECCV’96, Cambridge, Eng-
land, April 1996, pages 376-387, 1996.

154

Bibliography 155

[232] J. L. Mundy and A. Zisserman, editors. Geometric Invariance in
Computer Vision. MIT Press, Cambridge MA, 1992.

[246] A.P. Pentland. Smart rooms. Scientific American, 274(4):54-62,
1996.

[262] H. Rheingold. Virtual Reality. Secker and Warburg, 1991.

[286] Starner, T., and Pentland, A., Visual Recognition of American
Sign Language Using Hidden Markov Models, In Proc. Int. Work-
shop on Automatic Face and Gesture Recognition Zurich, Switzer-
land, pages 189-194, June 1995.

[318] P. Wellner. Interacting with paper on the DigitalDesk. Commu-
nications of the ACM, 36(7):86-96, 1993.

[337] A. Yuille and P. Hallinan. Deformable templates. In A. Blake
and A. Yuille, editors, Active Vision, chapter 2, pages 21-38. MIT
Press, 1992.

