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ABSTRACT
This paper addresses the problem of classifying actions per-
formed by a human subject in a video sequence. A represen-
tation eigenspace approach based on the visual appearance is
used to train the classifier. Before dimensionality reduction
exploiting the PCA/LLE algorithms, a high dimensional de-
scription of each frame of the video sequence is constructed,
based on foreground blob analysis. The classification task is
performed by matching incrementally the reduced represen-
tation of the test image sequence against each of the learned
ones, and accumulating matching scores until a decision is
obtained; to this aim, two different metrics are introduced
and evaluated. Experimental results demonstrate that the
approach is accurate enough and feasible for behavior clas-
sification. Furthermore, we argue that the choice of both
the feature descriptor and the metric for the matching score
can dramatically influence the performance of the results.

Categories and Subject Descriptors
I.2.10 [Artificial Intelligence]: vision and scene under-
standing—video analysis

Keywords
Visual surveillance, Behavior classification

1. INTRODUCTION
Human motion analysis based on compute vision techniques
is becoming a core building block of many system for analy-
sis of video information, including human-computer interac-
tion, event based video retrieval and automated surveillance.
The problem is to classify the action performed by a hu-
man in a video sequence. Several surveys have attempted to
summarize the various approaches (e.g. [18], [10], [1]). Fol-
lowing Moeslund and Granum’s taxonomy of system func-
tionality for computer vision based human motion capture,
the problem encompass either all or some of the following
sub-problems: initialization, tracking, pose-estimation, ac-
tion recognition. Our paper will mainly be focused on the

last sub-problem. Various approaches to action recognition
have been proposed in the recent past. In [4], two actions are
matched by computing the normalized correlation between
a set of features extracted from the optical flow. Polana and
Nelson in [14] use template matching in the spatio-temporal
space; the templates are generated from the statistics of the
normal flow. Another common approach is based on spatial
and temporal image derivatives. In [9] the temporal image
gradient at various temporal scales is used; Laptev and Lin-
deberg in [8] match representative points from spatial and
temporal gradients. The approach proposed by Bobick and
Davis in [3] evaluates the Mahalanobis distance between the
Hu moments based on the motion history templates from
a stack of silhouettes. A stack of silhouettes is also used
in [2] to extract spatio-temporal features through Poisson
equations; the matching score between two actions is eval-
uated with the Euclidean distance between these features.
Edge images are also used by Rahaman and Ishikawa [15],
who use eigenspace analysis to represent actions as man-
ifolds in a multidimensional space. Eigenspace approaches
have been proposed for several application scenarios, such as
face recognition [17], object representation and recognition
[11] and gait analysis [12].

The objective of this work is to learn a representation eigens-
pace for modelling and classifying the actions performed by
moving people. Behaviors are classified with respect to a
predefined set of learned actions. The spatio-temporal vi-
sual appearance of an action is used to train the classifier.
For this purpose, a high dimensional representation of each
frame of the video sequence based on blob analysis is con-
structed, which is aimed at reducing both the amount of
visual data being processed, and the effects of noise. Such
representation is then made more compact through a process
of dimensionality reduction, whose role is both to further
decrease computations at matching time, and to retain only
the essential characteristics of each behavior. Two different
dimensionality reduction approaches are investigated: Lo-
cal Linear Embedding (LLE) [16] and Principal Component
Analysis (PCA) [6]. Each action defines a curve in the re-
duced space, obtained by interpolating the samples acquired
from the video sequence. Once the training set of actions
has been acquired, the classification task is performed by
matching incrementally the reduced representation of the
test image sequence against each of the learned curves, and
accumulating matching scores until a decision is obtained.
Two different metrics (in the reduced space and in the origi-
nal space) to compute the matching score are introduced and
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Figure 1: An original frame (left) and the fore-
ground frame with superimposed representation
grid (right).

evaluated. Experiments show that the approach is accurate
enough and feasible for real time classification of human ac-
tions.

2. EXTRACTING THE REPRESENTATION
At both learning and matching times, video sequences un-
dergo a representation process consisting into two phases:
(1) feature selection (always on a frame-by-frame basis) and
(2) feature reduction. At learning time, a set of video se-
quences is captured, one for each action to be recognized
later by the classifier; the feature reduction phase is carried
out on the whole sequence. At matching time instead, the
feature reduction phase takes place for each individual frame
of the query sequence.

2.1 Feature Selection
In the feature selection phase, the sequence is processed with
a background subtraction algorithm [7] in order to extract
the moving blobs corresponding to the subjects performing
the action. For each frame, the blob mask is sub-sampled to
retain only the lower spatial frequencies, that encode the
most relevant features of the behavior at hand. This is
achieved by dividing each frame into N rectangular cells and
computing the percentage of foreground pixels in each cell.
With a frame of size 320×240 pixels, a typical sub-sampling
rate is N = 32×24 = 768 cells. The resulting frame descrip-
tion effectively captures both the shape of the blob and its
position in the image. Fig. 1 shows the sub-sampling grid
and the extracted blobs.

2.2 Feature Reduction
In the case of video sequences, consecutive data points (each
related to a frame) in the feature space are strongly cor-
related, and are likely to be close to each other, lying on
lower dimensional manifolds (see Fig. 2). Feature reduc-
tion attempts to eliminate any redundancies in the original
data set. Two feature reduction schemes have been consid-
ered and tested: PCA (Principal Component Analysis) and
LLE (Local Linear Embedding). The former is simpler and
faster, but works well only if data are distributed on linear
subspaces. The latter is specifically addressed to problems
where data are nonlinearly distributed in the feature space.

At learning time, feature reduction is performed for each
training sequence separately: this is done with the idea of
obtaining a better representation of individual actions than

Figure 2: Two examples of actions in the reduced
descriptor space (R3, in this case).

performing the data reduction on all the sequences of the
training set together. Another motivation for this “one se-
quence, one manifold” approach is that it supports an in-
cremental learning scheme, allowing the addition of any new
behavior to the classifier block without needing to process
again the whole training set.

2.2.1 PCA
Principal Component Analysis is a framework for reducing
the dimensionality of a data set consisting of many interre-
lated variables, yet retaining the variation of the whole data
set. This is done by transforming the original data into a
new set of variables (the “principal components”), uncorre-
lated and ordered so that the first few of them hold most of
the variation of the original set.

Let {Xi, i = 1 . . .m} be the high-dimensional data set with
zero mean (if not, first subtract the average value X of the
data set) and compute the covariance matrix Q = PP

⊤, with
P = [X1 . . .Xm]. The result of the eigenstructure decompo-
sition of Q is a set of decreasing eigenvalues {λ1 . . . λm} and
a corresponding set of orthonormal eigenvectors {e1 . . . em}.
Though all the eigenvectors are required to reconstruct per-
fectly any element Xi of the set, just few of them are enough
to give a good approximation of it. Thus, the first n eigen-
vectors {e1 . . . en} constitute the principal components of
the data set: they define a subspace where to project the
original data. The projection matrix is given by

Ppca = [e1 . . . en]⊤ . (1)

2.2.2 LLE
Local Linear Embedding is a recent framework proposed for
non linear dimensionality reduction; it attempts to discover
nonlinear structure in high dimensional manifolds assuming
that each data point and its neighbors lie on or close to a
locally linear patch of the manifold. Given enough samples
Xi of the manifold in R

N , the local geometry of each patch
can be characterized the linear coefficients wij obtained by
expressing each single point as a combination of its K neigh-
bors. This is achieved by minimizing the global error
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with the constraints wij = 0 if Xj is not a neighbor of Xi,
and

∑

j
wij = 1. A least squares solution for the optimiza-

tion problem above can be found. The weights wij thus
extracted are invariant to rotation, rescaling and transla-
tion of the patch, and characterize its intrinsic geometry.
Suppose that the data lie on a smooth manifold of dimen-
sionality n≪ N : since it is expected that the local geometry
of the original data space is maintained after the reduction
process, it is possible to find a set of points xi ∈ R

n that
minimize the embedding cost function
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with the set of weights {wij} kept fixed. The points xi

represent the samples of the manifold at lower dimension n
and are obtained by solving an eigenvector problem.

LLE provides just a better representation of the manifold
at low dimension, but cannot provide directly a mapping
between the high dimensional original space and the low
dimensional embedding space. A possible approach to ob-
tain such a mapping is using the pairs (Xi,xi) as labelled
examples for some learning algorithm. In [5] the Radial Ba-
sis Function interpolation framework [13] was used to learn
such nonlinear mapping. The paper shows how to learn a
mapping from the embedded manifold to the original space
and – exploiting the particular form of the radial basis func-
tion employed – how to obtain the inverse mapping. The
multiple radial basis function interpolants fk : R

n → R are
found, where k is the k-th dimension of the original space.
The function chosen has the form

fk(x) =
[

1 x⊤
]

ck +
∑

i
ukiφ(|x − xi|) , (4)

where ck ∈ R
n+1, uki are real coefficients and φ(·) is a real-

valued basis function. Typical choices for φ(v) are thin-plate

splines (φ(v) = v2 log v), Gaussians (φ(v) = e−αv2

) and bi-
harmonic splines (φ(v) = v). The whole mapping can be
written in matrix form as

X = f(x) = Bψ(x) ,

with B ∈ RN×(m+n+1) (m is the number of samples) and

ψ(x) =
[

φ(|x − x1|), . . . , φ(|x − xm|) 1 x⊤
]⊤
. Given a new

input data Y ∈ R
N , the corresponding point y in the em-

bedding space is found as the solution of

y = arg min
x

|Y − Bψ(x)|2 . (5)

Given the particular form of ψ(x), a linear approximation
for the solution of (5) can be obtained by solving for ψ(x)
(using the pseudo-inverse of B) and taking the last n rows
of ψ(x):

y = S VD̃U
⊤Y = PlleY . (6)

Matrices V, D̃, U are obtained by the SVD decomposition of
B = UDV

⊤ and D̃ is the diagonal matrix defined by taking the
inverse of the nonzero singular values of D and setting the
rest to zero. Matrix S has the form S = [0n,N−n|In].

3. MATCHING AND CLASSIFICATION
At matching time, each frame of an action to be classified is
projected onto the embedding space of each learned behav-
ior, and the closest point on the low-dimensional manifold

M is found as

x̂ = arg min
x̃

{|x̃ − x| : x̃ ∈ M} . (7)

Such a point is used to compute the matching score between
the query frame and each learned behavior.

Two different metrics for the matching score between a frame
and a behavior have been defined. As a consequence of the
“one sequence, one manifold” learning scheme, the embed-
ding space for each learned behavior can have its own dimen-
sion. The first metric is computed in the embedding space
exploiting the distance between x̂ and x̃; such a distance is
divided by the length LM of the diagonal of the hypercube
containing the manifold M in the embedding space. Nor-
malization is introduced with the intention of eliminating
the different size and dimension effect of a manifold with
respect to another. The matching score for the distance
computed in the embedding space is evaluated as:

ε
e = exp

(

−
|x − x̂|

LM

)

; (8)

i.e. it has a value between 0 and 1 and decreases as the
embedding error |x − x̂| increases. The second way to ob-
tain a measure of the matching score is to use a “mean”
reconstruction error instead of the distance in the embed-
ding space. The mean reconstruction error can be obtained
by back-projecting the closest point in the embedding space
onto the original high-dimensional data space, then com-
puting the Euclidean distance between the current and the
reconstructed frame descriptors, and dividing it by dimen-
sion N of the feature space. Since the reconstruction error is
computed in the original frame descriptor space, it can de-
tect easily if the form of the reconstructed blob is similar to
the input one. Furthermore, it is an independent measure
with respect to each manifold. In particular, in the PCA
case the embedded vector is evaluated as x = PpcaX, and
the reconstructed frame descriptor in the high-dimensional
space is computed as X̂ = P

⊤
pcax̂. On the other hand, in

the LLE case the matrix obtained as the linear approxima-
tion Plle in eq. (6) is used to compute the embedded vector
x = PlleX, and the reconstructed frame descriptor can be
obtained as X̂ = Bψ(x̂). In both cases, the matching score
is then evaluated as

ε
r = exp

(

−
|X − X̂|

N

)

. (9)

Given M learned actions, the matching scores εi, i = 1 . . .M
(what follows can be applied both to εe and εr) between the
current frame and the i-th behaviour are collected frame by
frame. Then all the scores are normalized such that

∑

i
εi =

1, so as to represent probability values. Specifically, each
normalized matching score is interpreted as the probability
that the i-th action is being performed. Since each action
ai is an event incompatible with all the others, we can write

P

(

M
∑

i

ai(t)

)

=
M
∑

i

P (ai(t)) , (10)

where P (ai(t)) represents the probability that at time t the
action ai is being performed.



To collect matching score observations in a compact way
as time goes by, the probability P (â(t), â(t − 1), . . . , â(t0))
is evaluated; this is the probability that the same action â

has been performed from time t0 to time t. For simplicity,
the event â(t) (“the action â is performed at time t”) is
considered independent from the previous events â(t − k)
(“the action â is performed at time t− k”). Hence,

P

(

t−t0
∏

k=0

â(t− k)

)

=

t−t0
∏

k=0

P (â(t− k)) . (11)

The system reaches a classification decision when there is
an action with joint probability much higher than all the
others:

maxai
P
(
∏t−t0

k=0 ai(t− k)
)

∑

i
P
(
∏t−t0

k=0 ai(t− k)
) > γt , (12)

where the threshold γt is a percentage value that gradually
decreases as the decision time increases.

3.1 Detection of unknown behaviors
The classification approach described above cannot handle
actions that do not belong to the action data set. Therefore,
a strategy is needed to avoid that, if an unknown behavior is
input to the system, the classification response be in any case
one among the learned behaviors. To achieve that, a tempo-
ral threshold τ is used to classify as belonging to the extra
class “unknown behavior” every input for which a classifica-
tion decision has not been reached within τ steps. Indeed, if
the query behavior is quite different from the learned ones,
the matching score values with respect to the actions in the
learning set are likely to be all approximately equal. As a
consequence, the probabilistic approach of eq. (12) is likely
not to reach a decision in the usual time required to clas-
sify known query inputs. The temporal threshold can be
empirically chosen as

τ = µf + 2σf , (13)

where µf and σf are the estimated mean and standard devi-
ation of the time needed for classifying known query inputs
(see Fig. 3). Actually, τ should be considered as a “soft”
threshold, the “hard” threshold being µf + 3σf . In fact, be-
fore definitely labelling as “unknown” a query input, when
the classification time τ is reached a check is performed to be
sure that the classification probabilities are approximately
equal. If it happens that a behavior has a dominant prob-
ability instead, an extra classification time ∆τ = σf is al-
lowed.

4. EXPERIMENTS AND RESULTS
In order to test system performance, a training set of ac-
tions taking place around a table was defined. Fig. 4 shows
the experimental environment from the camera viewpoint.
The training actions included walking along the four sides
of the table and sitting on the four chairs, for a total of eight
actions—see Fig. 5. The system learned a video sequence
for each action at setup time; after that, similar actions
were performed in random order by two different subjects,
one of them also involved in the training sequences. Video
sequences were temporally sub-sampled to obtain a frame
rate of 10 frames/s.
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Figure 3: Statistical distribution of classification
times.

Figure 4: The environment used for testing.
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Figure 5: Actions performed around the table.
From 1 to 4 they are walking along a side of the
table; form 5 to 8 they are sitting in the relative
chair.



1 2 3 4 5 6 7 8
1 86.7 . . 6.7 . . . 6.6
2 . 94.4 5.6 . . . . .
3 . . 100 . . . . .
4 8.3 . 25.0 66.7 . . . .
5 12.5 . . . 87.5 . . .
6 . . . . . 100 . .
7 . . 10.0 . . . 90.0 .
8 . . . 10.0 . . . 90.0

Table 1: Classification percentage using PCA and
the same subject involved in the training phase.

1 2 3 4 5 6 7 8
1 72.2 5.6 . 5.6 . . 5.6 11.0
2 . 97.7 2.3 . . . . .
3 . 8.7 88.4 . . 2.9 . .
4 11.1 . 22.2 66.7 . . . .
5 . . 7.7 . 84.6 7.7 . .
6 . . 5.0 . . 95.0 . .
7 . . 11.8 . . . 88.2 .
8 . . . . . . . 100.0

Table 2: Classification percentage using PCA and a
subject different from the one involved in the train-
ing phase.

As first experiment the normalized metric in the embedding
space of eq. 8 was tested, but such a metric did not give
good results. A better performance was noted for LLE with
respect to PCA: for PCA almost none of the action per-
fomed was correctly labelled, while for LLE the recognition
rates of four action ranged between 62.61% and 100%. We
explain the fact with the particular form of the feature de-
scriptor: since many elements of the input vector are zero
(no foreground in the cell), when projecting on the mani-
folds the corresponding column of the projection matrix are
eliminated in the product computation. As a consequence,
when a blob is not near the region where a given behavior
must happen, it is projected in the embedding space in a
unpredictable way: with this descriptor the distance in the
embedding space is not a good measure for the matching
score. The better performance of LLE is probably due to
the fact that the projection matrix is computed in an in-
dependent way, involving radial basis functions along the
manifold.

The second part of experiments deals with the use of the
second metric (mean reconstruction error) in eq. 9 as match-
ing score. Tabs. 1 and 2 show the confusion matrix using
PCA, while Tabs. 3 and 4 deal with LLE. Performance is
expressed in terms of percentage of right/wrong classifica-
tions. When an action is incorrectly confused with another
action taking place in the same image region, the resulting
misclassification is considered to be more acceptable than
in the case when the two actions take place in completely
different image regions. For instance, confusing actions 4
(i.e., walking along one right side of the table) and 2 (i.e.,
walking along the left side of the table) is interpreted as a
much more serious misclassification than confusing actions
8 (i.e., sitting on a chair along the right side of the table)

1 2 3 4 5 6 7 8
1 75.0 5.0 5.0 5.0 . . 10.0 .
2 19.2 65.4 15.4 . . . . .
3 . . 100.0 . . . . .
4 10.0 5.0 5.0 60.0 . . 10.0 10.0
5 7.7 . . . 92.3 . . .
6 . . 20.0 10.0 . 70.0 . .
7 . . . 2.1 . . 97.9 .
8 8.0 14.3 . . . . 20.6 57.1

Table 3: Classification percentage with LLE and the
same subject involved in the training phase.

1 2 3 4 5 6 7 8
1 36.5 8.8 17.6 10.6 . . 14.7 11.8
2 21.9 56.0 12.5 6.5 3.1 . . .
3 6.7 8.3 73.4 5.0 1.6 5.0 . .
4 17.3 34.5 . 39.1 . . . 9.1
5 . . 3.0 9.1 87.9 . . .
6 3.9 7.7 11.5 39.2 . 37.7 . .
7 2.9 . 5.7 22.8 . 2.9 65.7 .
8 31.7 29.3 2.4 2.4 . . 7.3 26.9

Table 4: Classification percentage with LLE and a
subject different from that one involved in the train-
ing phase.

and 4. From the tables is apparent that PCA performs bet-
ter than LLE. In fact, the PCA confusion matrix is much
more similar to a diagonal matrix than LLE’s for both the
subjects under test. Moreover, PCA does not give rise to se-
rious misclassifications, while LLE presents several cases of
serious misclassifications, especially in the case when a dif-
ferent subject from the training one is involved (see e.g. the
34.5% confusion percentage for actions 2 and 4). The worse
behavior of LLE as compared to PCA is due to the appear-
ance of “ghosts” during the vector back-projection phase
(see Fig. 6). “Ghosts” are foreground artifacts that arise
due to spatial interferences among radial basis functions:
their effect is to alter the matching scores of the various ac-
tions, some of which are increased, and some decreased in
the wrong way. The emergence of ghosting effects calls for
a revision of the remapping policy for LLE.

(a) (b)

Figure 6: An original frame descriptor (a) and
the back-projected one obtained with LLE (b).
“Ghosts” are visible in the right side of the image.



1 2 3 4 5 6 7 8 9
1 87.5 . . . . . 12.5 . .
2 10.0 80.0 10.0 . . . . . .
3 . . 90.9 . . 4.6 . . 4.5
4 6.3 . 25.0 25.0 . . 25.0 . 18.7
5 . . . . . . . . .
6 . 5.9 . . . 88.2 . . 5.9
7 . . 25.0 . . . 65.0 . 10.0
8 . . . . . . . 94.4 5.6
9 13.3 . 8.3 16.7 . . . . 61.7

Table 5: Behavior classification percentage with the
criterion of section 3.1 to detect unknown actions.
PCA is used. The unknown behavior is labelled as
number 9. The same person involved in the training
phase performs the video sequence.

Tabs. 5 and 6 deal with thecriterion of section 3.1 employed
to detect unknown behaviors. The data reduction algo-
rithm used was PCA. The test sequences for these exper-
iments were particularly challenging, as they featured not
only actions different from the ones learned, but also inter-
actions between the subjects and the environment, i.e. dis-
placements of the chairs around the table, and of some ob-
jects on the table. The tables show that the correct clas-
sification percentage decreases with respect to the previous
experiment—notice in particular that the confusion matrix
is more sparse than before. Nevertheless, serious misclassifi-
cations are absent also in this case, and performance appears
to be still acceptable.

5. CONCLUSIONS
An approach for the classification of actions performed by a
human subject in a video sequence was presented. A high
dimensional description of each frame of the video sequence
is introduced, based on foreground blob analysis, and the in-
trinsic features of each behavior sequence are extracted by
computing LLE/PCA feature reduction. Experimental re-
sults shows some problems with the choice of the feature de-
scriptor and the projection in the embedding space, specially
for PCA. On the other hand, back-projection provides good
results for PCA and a worst performance for LLE. Thus, fu-
ture works will deal with finding a better mapping between
feature space and embedding space for LLE, together with
the study of other feature descriptors. To end, more chal-
lenging action dataset will be investigated and the extension
to monitoring more than one person will be addressed.
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