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ABSTRACT

This paper explores content-based image registration as a means of dealing with and understanding

better Electronic Image Stabilization (EIS) in the context of Photo Response Non-Uniformity (PRNU)

alignment. A novel and robust solution to extrapolate the transformation relating the different image

output formats for a given device model is proposed. This general approach can be adapted to specif-

ically extract the scale factor (and, when appropriate, the translation) so as to align native resolution

images to video frames, with or without EIS on, and proceed to compare PRNU patterns. Compara-

tive evaluations show that the proposed approach outperforms those based on brute-force and particle

swarm optimization in terms of reliability, accuracy and speed. Furthermore, a tracking system able to

revert back EIS in controlled environments is designed. This allows one to investigate the differences

between the existing EIS implementations. The additional knowledge thus acquired can be exploited

and integrated in order to design and implement better future PRNU pattern alignment methods, aware

of EIS and suitable for video source identification in multimedia forensics applications.

1. Introduction

Photo Response Non-Uniformity (PRNU) is a unique, fixed

noise pattern generated during the acquisition process by any

digital sensor (Lukas et al., 2006). This makes PRNU ideal to

develop robust methods for source attribution in image foren-

sics (Chen et al., 2008). The PRNU pattern is extracted pix-

elwise in order to derive the fingerprint of a device, imply-

ing that PRNU patterns are best generated and compared at

native camera resolution (Shullani et al., 2017). Due to their

high sensitivity to pixel misalignments, PRNU patterns become

particularly difficult to compare when the source images have

been warped by the device internal acquisition post-processing.

For this reason, the reliability of PRNU-based source attribu-

tion techniques on videos acquired with Electronic Image Sta-

bilization (EIS) is strongly decreased. Indeed, video frames

processed by EIS are typically obtained from a scaled, trans-

lated and/or rotated portion of the full sensor area in order

to compensate for camera shakes and improve the final qual-
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ity (Grundmann et al., 2011). Notice that the same does not

apply with Optical Image Stabilization (OIS), that instead dy-

namically accommodates the lens, leaving the sensor response

untouched. In the general case, no specifications about the EIS

algorithm and the video frame transformation parameters are

available from the manufacturer, making it difficult to revert

back the geometrical transformation applied by EIS as a pre-

processing step before perfoming PRNU-based source attribu-

tion. Current approaches attempt to find an accurate estimate

of the EIS transformation by maximizing the PRNU correla-

tion in terms of Peak-to-Correlation-Energy (PCE) either by

brute-force search (Taspinar et al., 2016; Iuliani et al., 2019)

or, more recently, by particle swarm (Mandelli et al., 2019) and

other specific parameter search space sub-sampling and opti-

mizations (Altinisik and Sencar, 2020). This kind of approaches

can be computationally expensive, not sufficiently accurate, or

demand some a priori knowledge to meet the accuracy require-

ments.

This paper investigates novel uses of scene content image

registration to deal with EIS and PRNU. The contribute is

twofold:

• A novel and robust solution, first outlined in Bellavia
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et al. (2019), is designed for aligning the PRNU patterns

extracted from any two output formats of a given de-

vice (i.e. photos or videos at various resolutions). Differ-

ently from previous approaches, after acquiring the same

static scene in each output format, the transformation re-

lating two different formats is found by keypoint descrip-

tor matching (Szeliski, 2010) on the image scene content.

Registration refinement by maximizing the PRNU corre-

lation over a limited parameter search space can also be

integrated to improve accuracy further. The approach does

not take into account possible rotations when EIS is on.

According to the experimental evaluation, the proposed

solution is more reliable, accurate and faster than the state-

of-the-art approaches. Furthermore, the experimental ev-

idence has shown that PRNU pattern registration depends

only on the device model, and not on the device exemplar

at hand. This implies that having access to a single device

for each model of interest is sufficient to estimate, with

the proposed approach, the PRNU pattern transformation

for any other device of the same model. Model-related

transformations can then be collected into a database and

employed for practical applications involving the PRNU-

based analysis of videos.

• A new method to revert back (i.e., to estimate and remove

from the images by map inversion) EIS frame warping in

a controlled environment is devised and discussed. This is

made possible by tracking points on a physical grid inte-

gral with the acquisition device, so that each tracked grid

point identifies a unique pixel in the original sensor matrix.

The physical support used for this aim is named “Alvaro,”

since the method resembles the act of peeping through a

keyhole, a gag often performed in the 1970s by the Italian

comic actor Alvàro Vitali. Notwithstanding some limita-

tions, to be discussed later in the paper, this is currently

the only method able to produce reliable information on

the EIS frame manipulation done by the device built-in

hardware, which allows one to get a deeper understand-

ing of the specific EIS algorithms used by a particular de-

vice model. Disclosing this kind of knowledge can con-

tribute significantly to take into account further elements

in the design of more robust and efficient PRNU alignment

strategies in the presence of EIS.

The rest of the paper is organized as follows. Related work

is presented in Sec. 2. Scene content based PRNU registration

is described and evaluated in Sec. 3. The Alvaro device and

its associated estimation method is introduced together with its

experimental results in Sec. 4. Conclusions and future work are

discussed in Sec. 5.

2. Related work

PRNU is a unique high-frequency artifact arising during the

device acquisition process, that has shown to be a valid tool

for addressing the source attribution problem of digital pho-

tos (Chen et al., 2008). Flat scenes, mainly containing low-

frequency signal content, are often preferred for extracting the

PRNU reference fingerprint, as they reduce PRNU signal con-

taminations due to scene content. Extending PRNU-based

methods from photos to videos is not straightforward, due to

the inferior reliability of the PRNU signal on videos, whose

frames have lower resolutions and stronger compression ratios

than their photo counterparts (Mandelli et al., 2019). In the

case of videos, it is preferable to extract the reference finger-

prints from photo images obtained at native sensor resolution,

as they can preserve better the original source signal (Iuliani

et al., 2019). For similar reasons, only I-frames are usually em-

ployed for PRNU based verification on videos (Taspinar et al.,

2016; Iuliani et al., 2019; Mandelli et al., 2019). Nevertheless,

the recent H.264 and H.265 codecs can introduce intra-frame

compression in I-frames that, in the case of flat content, gives

rise to high compression rates but, as a side effect, also to strong

PRNU degradations (Kouokam and Dirik, 2019). Moreover, an

accurate alignment between the full resolution fingerprint and

the video frames is needed, so as to compensate for the fixed

scaling and cropping on the video frame with respect to the na-

tive image, introduced by the device to meet strict video stream

computational constraints. EIS makes things even more com-

plicated, since each frame can undergo a further distinct and

unknown geometric transformation to cope with camera hand-

shaking and rolling shutter (Grundmann et al., 2011). In the

most general case, affine warping is used to model EIS frame

manipulation. Nevertheless, recent experimental analyses sug-

gest that in many circumstances only the transformation relat-

ing the different acquisition formats (i.e., the scale) is actually

relevant, and one can ignore the unknown frame distortions in-

troduced by EIS (Mandelli et al., 2019). This happens because

EIS softwares usually bring back frames to their original un-

altered positions as EIS becomes inactive, and larger parts of

a video are composed by frame sequences obtained by smooth

camera paths, i.e., by movements where the camera either stays

still or moves smoothly enough as not to trigger EIS.

State-of-the-art PRNU alignment solutions for videos work

by searching for the PRNU pattern transformation which max-

imizes the PRNU correlation between the fingerprint and the

video frame under test, echoing previous works dealing with

image PRNU alignment in case of digital zooming (Goljan and

Fridrich, 2008) and other digital post-processing manipulations

such as lens distortion correction (Goljan and Fridrich, 2012,

2013) and seam-carving rescaling (Karaküçük et al., 2015). In-

cluded transformations are translation, scale and rotation. The

best translation (and implicitly the best cropping) can efficiently

be found in the frequency domain when no other transforma-

tions are present, but adding scale and rotation significantly in-

creases the search space complexity. Except for (Höglund et al.,

2011), the first work dealing with PRNU on stabilized videos by

compensating for frame translations only, the search in the pa-

rameter space was usually carried out by brute-force (Taspinar

et al., 2016; Iuliani et al., 2019). Recently, particle swarm

optimization replaced brute-force search, yielding a faster and

smarter search approach (Mandelli et al., 2019). Other search

space improvements have also been explored, such as hierar-

chical search space sampling and partial fingerprint usage (Al-

tinisik and Sencar, 2020). Nevertheless, these last kinds of op-
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timizations can be slow for some applications, and strongly de-

pend on human skill to define a parameter setup in order for the

algorithms to work properly (for an experimental assessment of

this claim, see Sec. 3.2).

Keypoint image matching has a long history in computer vi-

sion (Szeliski, 2010). Although it has evolved through time,

its main core remains almost unaltered and still today offers

one of the best solutions for scene tracking and registration

in many application contexts, such as three-dimensional re-

construction (Jin et al., 2020; Mur-Artal et al., 2015), im-

age stitching (Zaragoza et al., 2013) and large-scale image re-

trieval (Zheng et al., 2018). In its essence, keypoint image

matching is aimed at obtaining a set of sparse correspondences

between two or more images to model the transformation be-

tween them. Three main steps can be identified for this purpose:

(1) the extraction of keypoints, i.e. of distinctive yet repeatable

characteristic points on the images; (2) the computation of local

descriptors which encode the distinctive features of the image

region surrounding each keypoints; (3) the actual matching be-

tween keypoints according to their descriptor similarity, often

in conjunction with some robust outlier rejection.

3. Scene content PRNU alignment

3.1. Method description

The first step of the proposed approach is to hold the de-

vice still and acquire images of a static scene using the avail-

able photo and video formats. The native full resolution photo

serves as reference for the sensor grid, which the other image

formats must be mapped into. It may be argued that this acqui-

sition step would be unpractical in many application scenarios,

should one have to repeat the procedure for each specific device.

However, as shown later in the experimental section, the under-

lying PRNU pattern transformation only depends on the device

model and not on the device exemplar at hand. This implies

that, once estimated for one device, the same transformation

holds for any other device of the same model. Hence, source

attribution inquiries where the source device model is known

(e.g., for having been produced as forensic evidence) can be

successfully resolved by means of the proposed approach. Our

approach can be effective also to solve blind source attribution

problems, where a set of videos has to be clustered according

to their unknown source devices. In fact, provided that a large

enough database of transformation parameters for the different

device models has been built with the proposed approach, pa-

rameter search can be quickly carried out, being limited to only

neighborhoods around each of the database entries. Figure 1a-

b shows an example of the above acquisition step. In order to

improve the registration accuracy, the scene must be on focus

and include discriminative patterns distributed across the whole

image area. In the case of videos, only I-frames are considered

and, when available, acquired images are taken using remote or

vocal controls in order to avoid any accidental misalignments

due to camera shakes.

In order to register an output format to the reference, corner-

like keypoints are extracted with the HarrisZ detector (Bellavia

et al., 2011) and are matched with the SIFT-like sGLOH2 local

image descriptor (Bellavia and Colombo, 2018). Given the ini-

tial set of correspondences, the unknown image transformation

is estimated in a robust way using RANndom SAmple Consen-

sus (Fischler and Bolles, 1981). An affine warping model is

used that includes scale and translation changes, but not rota-

tions. The scale factor is the most important parameter and it

is fixed for any device output format, even in case of EIS (see

later the experimental results with Alvaro). If EIS is off, then

the translation is fixed. Conversely, when EIS is on, translation

can be easily recovered by PCE maximization, provided that

frame rotations are not involved. An example of registration is

shown in Fig. 1c-d: Notice that video frames cover a smaller

portion when EIS is on, in order to compensate for translations

and rotations while avoiding missing image spots from areas

not covered by the camera sensor.

RANSAC estimation requires to set the inlier reprojection

error ǫ, indirectly setting the degree of uncertainty in the final

model. According to this observation, the transformation esti-

mated so far can be refined through an exhaustive search over a

small set of allowable scales, translations and rotations, operat-

ing analogously to other PRNU pattern alignment approaches.

Specifically, the PRNU correlation in terms of PCE is evaluated

over a limited set of transformations. Warping transformation

refinement requires to extract the reference PRNU pattern and

the warped PRNU pattern from flat scenes (i.e., with uniform

color content), that will be used to compare PCEs. The more

images are used to compute the PRNUs, the more accurate will

be the refinement.

(a) (b)

(c) (d)

Fig. 1: Static scene image registration on a Huawei P9 Lite smartphone. The

native full resolution photo (a) is used as reference to register the corresponding

video frame in case EIS off (b,top) and on (b,bottom) using image keypoint

matching. The final aligned video frames superimposed on the reference image

are shown in (c) and (d), respectively. All images are scaled according to their

resolution. The reference image on (c) and (d) is shaded for a better visual

comparison.

A given length l on the reference image scales to l′ = l × s

on the warped image according to the initial scale factor s. The

reprojection error threshold is experimentally set to ǫ = 4 (i.e.,

the estimated average keypoint localization error) so that the
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Table 1: PRNU registration evaluation results (see text for details).

Device

model

Recording

mode

Scale PCE Time (sec)

G Gr Gm P Pr G Gr Gm P Pr G Gr −G Gr P Pr

µ 1.6993 1.7001 1.7001 2.3125 2.2454 5826 7746 7746 1691 1358 18 44 62 524 439

σ – 0.0000 – 0.6059 0.5941 1426 1922 1922 2289 2191 – 0 0 100 82

min – 1.7001 – 1.6976 1.6967 656 820 820 42 42 – 43 61 387 341
S

am
su

n
g

G
al

ax
y

A
3

max – 1.7001 – 2.9920 3.0000 6905 9176 9176 6433 8627 – 45 63 658 606

µ 2.1000 2.0997 2.0997 1.7740 2.1976 1168 1233 1233 456 521 34 73 107 411 404

σ – 0.0000 – 0.7310 0.4968 298 313 313 473 527 – 1 1 63 72

min – 2.0997 – 0.5000 1.0000 434 478 478 37 37 – 73 107 329 291

max – 2.0997 – 3.0000 3.0000 1820 1920 1920 1453 1701 – 77 111 674 604

µ 1.7485 1.7494 1.7499 1.3374 2.0793 212 347 336 137 117 33 81 114 384 399

σ – 0.0015 – 0.7728 0.6922 237 429 429 248 130 – 0 0 59 73

min – 1.7448 – 0.5000 1.0051 27 31 25 37 37 – 80 113 325 289

max – 1.7526 – 3.0000 3.0000 1255 2249 2249 1457 563 – 82 115 658 580

µ 0.8325 0.8332 0.8333 2.5241 0.7762 1461 2700 2620 319 1648 8 14 22 552 44

σ – 0.0012 – 0.7787 0.1147 1533 2980 2945 851 1875 – 0 0 120 1

min – 0.8293 – 0.8297 0.5000 23 29 22 47 34 – 13 21 261 43

S
am

su
n

g
G

al
ax

y
S

7
(1

st
d

ev
ic

e)

max – 0.8363 – 3.0000 0.9720 6749 12531 12392 4182 6004 – 14 22 669 48

µ 2.0924 2.0966 2.0982 1.2509 1.8340 31 488 486 381 603 39 83 122 359 347

σ – 0.0029 – 0.7366 0.5014 5 360 362 522 527 – 0 0 28 32

min – 2.0895 – 0.5000 1.0000 26 32 26 39 38 – 82 121 326 285

max – 2.0982 – 2.1046 2.5687 49 925 925 1674 1559 – 84 123 399 393

µ 1.7512 1.7515 1.7499 1.1065 1.6360 104 125 105 79 93 38 81 119 364 341

σ – 0.0026 – 0.5700 0.5861 93 98 92 50 78 – 0 0 17 53

min – 1.7471 – 0.5086 1.0000 28 32 27 45 35 – 81 119 338 281

max – 1.7552 – 1.7571 3.0000 409 431 361 226 355 – 82 120 399 522

µ 0.8372 0.8356 0.8344 2.2775 0.7446 60 152 130 65 123 9 14 23 489 44

σ – 0.0018 – 0.8528 0.1331 34 130 129 53 96 – 0 0 132 1

min – 0.8335 – 0.5060 0.5000 26 32 23 38 38 – 14 23 151 44

S
am

su
n

g
G

al
ax

y
S

7
(2

n
d

d
ev

ic
e)

max – 0.8405 – 3.0000 0.8374 129 534 534 321 414 – 15 24 705 45

µ 0.7944 0.7951 0.7981 1.5721 0.7726 107 220 183 612 1019 8 14 22 343 45

σ – 0.0022 – 0.9340 0.1370 83 314 309 1308 2122 – 0 0 165 1

min – 0.7912 – 0.5000 0.5000 37 50 31 67 71 – 13 21 81 43

H
u
aw

ei

P
9

L
it

e

max – 0.7981 – 3.0000 1.0000 523 1535 1535 6656 8728 – 14 22 686 46

µ 2.8777 2.8782 2.8759 1.5447 2.2467 95 134 129 94 86 72 182 254 834 719

σ – 0.0035 – 0.9944 0.6782 131 203 204 152 112 – 1 1 21 21

min – 2.8725 – 0.5000 1.0782 28 33 27 36 37 – 181 253 811 700

max – 2.8857 – 3.0000 2.9949 452 674 674 665 552 – 183 255 906 788

µ 2.3013 2.3005 2.3003 1.2127 1.6330 38 43 38 49 48 70 200 270 824 711

σ – 0.0019 – 0.6753 0.7032 14 15 16 19 17 – 1 1 8 15

min – 2.2962 – 0.5000 1.0000 27 32 26 37 36 – 199 269 811 696

max – 2.3050 – 2.8759 3.0000 93 98 93 161 139 – 202 272 840 766

µ 0.7998 0.7997 0.8001 2.5396 0.8114 784 1119 860 443 880 9 14 23 540 45

σ – 0.0017 – 0.6737 0.1185 839 1205 951 453 919 – 0 0 108 0

min – 0.7961 – 0.5104 0.5085 58 84 58 185 102 – 13 22 265 44

S
o

n
y

X
p

er
ia

X
A

1
G

3
1

1
2

max – 0.8035 – 3.0000 0.9984 2534 3475 2632 3143 3161 – 15 24 712 45

µ 1.3343 1.3335 1.3334 1.4217 1.7556 2974 4383 4081 1441 1852 25 57 82 359 362

σ – 0.0008 – 0.6236 0.6985 1614 2485 2298 1982 2425 – 0 0 96 90

min – 1.3327 – 0.5003 1.1685 253 453 174 47 41 – 57 82 259 227

iP
h
o
n
e

4
S

max – 1.3365 – 2.9918 3.0000 5928 8361 8212 6910 7341 – 58 83 594 522

µ 1.7754 1.7772 1.7778 1.2848 1.6941 1127 1800 1767 927 1314 36 81 117 357 315

σ – 0.0015 – 0.5712 0.3217 520 918 921 957 925 – 0 0 17 23

min – 1.7723 – 0.5000 1.0000 29 33 28 44 40 – 80 116 331 284

iP
h
o
n
e

6
S

max – 1.7782 – 1.7812 2.2073 1844 3133 3105 2860 2844 – 81 117 378 365

The “recording mode” column indicates which image formats are employed for recording, the reference format being on left.

photo EIS unknown EIS off EIS on

actual scaled length l′v ranges in the values

l′v = l′ + v , v ∈ [−ǫ,+ǫ] (1)

where v is quantized by a step of q = 0.5 pixels for computa-

tional efficiency. This leads to a set of 2ǫ/q + 1 = 17 allowable

scale values sv = l′v/l depending on v. Considering as values

for l the width and height of the reference image, and repeat-

ing the process analogously on the warped image to be evalu-

ated, the maximum number of allowable scales to be checked is

17 × 4 = 68, which corresponds to all the 17 possible values of

v and the 4 values of l. Specifically, the PRNU pattern extracted

from the warped images is rescaled with respect to the reference

PRNU pattern according to each allowable scale among the 68

scales, and the one maximizing the PCE is chosen. Refined

translation tv is obtained from sv as

tv =

n∑

k=1

pk
′
− svpk

n
(2)

where (pk,pk
′) are the n RANSAC inlier keypoint pairs, being

pk and pk
′ points in the reference image and in the video frame,

respectively. While refining the scale, translation values tv can

be used to check the PCE peak location consistency, so as to

discard solutions with relevant deviations. Note that this false

alarm reduction strategy is not possible with other approaches

based only on the maximization of the PRNU correlation.
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3.2. Experimental results

The proposed PRNU pattern registration approach is com-

pared on seven different devices against particle swarm opti-

mization, which provides better accuracy and computational

efficiency than brute-force approaches. For each device, the

PRNU pattern of video I-frames from a flat homogeneous scene

content is warped according to the transformation parameters

found by the corresponding method into the reference PRNU

pattern. The PCE between the warped and reference PRNUs

is then evaluated. The reference PRNU pattern was extracted

from photos at native resolution but also from video I-frames

acquired with EIS off when the source video to check was ac-

quired with EIS on. Smooth video paths are assumed, so no

rotations were taken into account. For each device, tested for-

mat and compared method, Table 1 reports the estimated scale,

the accuracy in terms of PCE, and the running time. Results are

presented in terms of mean µ, standard deviation σ, and mini-

mum and maximum statistics (detailed results, dataset and code

are available as additional material for further analysis and re-

producibility1). The proposed scene content PRNU alignment

before and after refinement are indicated as G and Gr, respec-

tively. Additionally, Gm represents the results obtained by aver-

aging Gr scales while discarding video I-frames with low PCE

values (i.e., less than 50) on G, as a fast way to skip unreli-

able frames. For particle swarm, implemented using the Matlab

built-in function, two different setups were evaluated. In detail,

setup P uses 35 particles and a scale search range in [0.5, 3],

while setup Pr uses 30 particles and a scale search range in

[1, 3] and [0.5, 1], respectively when the reference PRNU pat-

tern is extracted from native full resolution photos or video

frames captured with EIS off.

The mean PCE value obtained with the scene content reg-

istration method G only is in most cases quite accurate, even

without scale refinement (method Gr). The average registration

Gm gives values very close to those given by Gr. The almost

identical scale values obtained with the two different Samsung

S7 devices witness that the warping transformation between the

different image formats does not change among devices of the

same model. This is quite reasonable since, differently from ac-

quisition, the warping process is not analog but digital and de-

pends on the device firmware (actually, firmware updates may

exist for the same device model, yet it is very unlikely that these

contain changes in their low-level camera acquisition code).

This implies that Gm warping information can be used with

other devices of the same model, thus avoiding one to acquire

each time ad-hoc static scene images or videos. Moreover, as

reported in the additional material, transformations across the

different image acquisition formats can be concatenated with-

out any accuracy degradation. Concerning particle swarm opti-

mization, Pr results are usually more accurate and reliable than

those obtained with P, confirming that the particle swarm ap-

proach can lead to unstable or even wrong solutions if no clues

about the allowable transformation parameter range are avail-

able.

1https://drive.google.com/open?id=1hfqqWDBZRxTErDNAjQg-GtTYUj267gdl

(a) (b)

(c)

Fig. 2: (a) True and (b) false positive attribution rates for increasing PCE thresh-

old, solid and dashed curves refer respectively to rely on a single frame and a

majority voting over 3 frames in order to get the final decision. Corresponding

ROC curves are shown in (c). Best viewed in color and zoomed in.

The proposed scene-based PRNU pattern registration is in

general more accurate and reliable than that obtained by parti-

cle swarm optimization, also considering the lower excursion

range in the scale and PCE values by inspecting the σ, mini-

mum and maximum related values. The only relevant excep-

tion is the Huawei P9 Lite, for which the proposed approach

obtains lower PCE values even if the PCE variation σ among

all the tested frames is lower than particle swarm. As detailed

in the next section, this device model has some peculiarities

that could have affected the comparison. Notice also that in this

case P obtains the highest average PCE value after Pr, but it

is more distant in terms of the retrieved scale from Pr than the

proposed scene content based methods, underlining accidental

inconsistencies that may occur due to the stochastic nature of

PRNU. Analogous considerations about consistency and stabil-

ity of the scales and PCE values hold for the Samsung Galaxy

S7 (2nd device, mapping from photos to I-frames with EIS off)

and the Sony Xperia XA1 G3112 (mapping from photos to I-

frames with EIS on), whose average PCE values can be slightly

better for the Pr particle swarm than the proposed scene content

approaches.

The previous analysis is corroborated by the source attribu-

tion test whose results are reported in Fig. 2 in terms of True

Positive Rate (TPR), False Positive Rate (FPR) and Receiver

Operating Characteristic (ROC) curves. Two alternative ap-

proaches were investigated to establish whether an unknown

video was recorded by a specific source device. In the first ap-

proach, the decision was taken according to a preset threshold

on the PCE value between the PRNUs of a single frame of the

unknown input video and the reference device to be queried.

In the second approach, three frames of the unknown video

were considered, and the final decision was taken according

to a majority voting scheme on the same basis of the single
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frame check. To define a query, the same dataset of the pre-

vious experiment was used, with 17 device/acquisition format

source pairs (thirtheen pairs as reported in Table 1, plus other

four obtained by concatenating transformations as detailed in

the additional material) and flat unknown videos, considering

only I-frames. The total number of true positive queries evalu-

ated is 678 for the single frame test, corresponding by construc-

tion to 678/3 = 226 queries in the case of the majority voting

test, i.e., in the latter case, three queries from different I-frames

of the same unknown video were merged into a single query.

The respective numbers of true negative queries are 1098 and

1098/3 = 366.

TPR and FPR plots show that the proposed scene content

PRNU alignment works with lower PCE thresholds (about 10

units less) with respect to particle swarm, which implies a more

accurate PRNU registration. Likewise, the ROC curves evi-

dence a better behavior of the proposed approach in the source

attribution task. Furthermore, it can be noted that aggregate

decisions on the majority voting scheme can improve the final

decision. Globally, Gm works slightly better than Gr, which are

both better than the unrefined strategy G.

Finally, concerning running times, according to Table 1

scene-based PRNU registration G is very fast and even by sum-

ming up the further refinement step Gr, the approach is faster

than particle swarm optimization. Notice that in the table the to-

tal running time for Gr is obtained by adding the corresponding

columns G and Gr − G (the refinement step alone). In particu-

lar, the full approach Gr is about four times faster than particle

swarm optimization. The only exception is when Gr is com-

pared against Pr and the transformation involves mapping from

video frames with EIS off to frames with EIS on, for which the

proposed approach is only twice faster due to the lower resolu-

tions involved. As matter of fact, running times depend on the

image resolution and the scale search range. Clearly, particle

swarm accuracy can be improved by employing more particles

at the expense of higher computational time.

4. Reversing EIS

4.1. Alvaro description

Alvaro, the support employed to extract EIS data, is shown

in Fig. 3. It is composed of a cubic brass frame of side 1 meter,

with plywood panels on each face except one to strengthen the

structure and decrease nonrigid oscillations when it is moved

or shaken. On the empty face there is a thin grid made by a

stretched nylon thread, whose intersections are evidenced by

(a) (b)

Fig. 3: (a) Front side and (b) back side of Alvaro, notice the device placed in

(best viewed in color and zoomed in).

markers (see Fig. 3a). On the opposite face to the grid, in the

center, there is a slot on which the device acquisition sensor

under test is firmly fastened by strings (see Fig. 3b). Once

put in place, the device becomes integral with Alvaro and the

grid. Each grid marker is virtually anchored to a location in-

side the device sensor matrix grid, so that markers visible on

a warped EIS frame can individually be mapped back onto the

sensor matrix grid. Knowing the marker correspondences with

respect to the reference frame enables one to find the EIS warp-

ing transformation for the current frame. Notice that the Alvaro

approach (1) requires a controlled environment for studying the

effect of EIS and (2) it cannot work if OIS is simultaneously en-

abled on the device, since in that case grid markers would not

be anchored to the device matrix grid.

In order to obtain a frame by frame correspondence between

the markers, an automatic tracking system was developed. Due

to the really small size of the markers, chosen for avoiding in-

terferences with the EIS system, state-of-the-art tracking solu-

tions would not work. To solve this issue, an ad-hoc track-

ing system was developed based on keypoint matching. Being

Ki the set of HarrisZ keypoints on frame i-th, the set of key-

points Mi ⊂ Ki associated to the markers are matched to the

keypoints Ki+1 on the next i+1-th frame, through sGLOH2 de-

scriptor matching. Notice that using all the keypoints Ki is not

a good choice, since this would lead to erroneously estimate the

dominant transformation of the scene undergone by non-marker

keypoints. Hence, to improve the matching accuracy, the puta-

tive corresponding keypoints of the i+1-th frame (Ki+1) are con-

strained to stay inside a circular window of 50 px radius from

the marker keypoints of the i-th frame (Mi). The process is fur-

ther refined using RANSAC, finding the transformation Hi,i+1

from the i-th frame to the i+1-th frame, modeled as a planar

homography in order to be the most general, and the putative

marker keypoints Mi+1. In order to avoid accumulating errors

when concatenating successive transformations with respect to

the reference 0-ed frame, i.e. H0,i+1 = Hi,i+1H0,i, the homogra-

phy is re-estimated as H0,i+1 using RANSAC between keypoint

markers M0�i and Mi+1, where M0�i are the marker keypoints

of the reference frame that have a corresponding marker on the

i-th frame, notice that markers can provisionally go out of sight

in a frame. The next frame marker keypoints Mi+1 are then

found by re-projecting through H0,i+1 the whole set of marker

keypoints M0 of the reference frame (provided manually as in-

put to the tracker) and associating to them the closest keypoints

in Ki+1, if they fall inside the frame canvas. This expedient

allows the recovery of lost markers that went out of sight at

some frame. Figure 4 shows the results of reversing EIS warp-

ing according to the transformation estimated with Alvaro for

two video frames obtained with the devices analyzed hereafter.

Notice that in Fig. 4b the bottom marker row went out of sight.

4.2. Case study

Two mid-range smartphones, the Huawei P9 Lite and the Xi-

aomi M2 A1, were considered for analyzing EIS. The testing

video sequences were obtained by moving and shaking the de-

vices on Alvaro in front of a fixed background, and addition-

ally introducing moving foreground objects of different sizes
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(i.e. walking or jumping people, and fluttering flyers). For each

frame, the homography obtained by tracking the grid markers

was employed to revert back the frame EIS transformation as

described previously (see again Fig. 4). The resulting videos,

together with the input sequences and the tracking code, are

freely available2: The reader is strongly invited to examine

these videos for a better understanding of the process. The

tracking is quite stable, except in some cases due to motion

blur effects that decrease keypoint localization accuracy and for

some unabsorbed, non rigid oscillation of the Alvaro structure

with respect to the camera.

Figure 5 depicts for each analyzed sequence the decomposi-

tion of the EIS frame transformation into a similarity. In ad-

dition to each component of the similarity transform, it is also

indicated the reprojection error obtained as the more general

homography estimated by tracking with Alvaro is fitted into a

similarity, having less degrees of freedom. This reprojection

error is fully compatible with the keypoint localization accu-

racy of the scene content of the current frame. Moreover, the

slight variation of the scale component, that is associated to the

temporary loss of keypoint accuracy discussed above, suggests

that frame transformations inside a EIS video are only met-

ric, i.e. they involve only rotation and translation. In addition,

no rotation of more than 5 degrees was observed. Both scale

constraints and rotation limits can be exploited for designing

new PRNU registration methods. For the sake of completeness,

affine frame decomposition, that confirms the absence of shear-

ing, i.e., of different scaling factors in the horizontal and vertical

directions, is also reported in the additional material.

Furthermore, from the analysis carried out emerges that dif-

ferent device models use distinct EIS implementations. In par-

ticular, observing the second part of the sequence where Alvaro

is fixed while a person is moving from one side to the other, it

comes out that Huawei P9 Lite triggers EIS according to scene

visual flow, opposing to the Xiaomi M2 A1, for which EIS is

based on physical movement sensors (i.e., gyroscopes or ac-

celerometers). Moreover, unlike the Xiaomi M2 A1, it can be

observed that EIS frame rotation steps seem quantized for the

Huawei P9 Lite, maybe due to the usage internally of Look-up

Tables (LUT) for an efficient computation of the frame warp.

Finally, the Huawei P9 Lite tends to maintain the last frame

transformation over the next frames even if the condition that

has triggered EIS disappears, while the Xiaomi M1 A2 in this

case tends to smoothly come back to the original reference sta-

2
https://drive.google.com/drive/folders/1vdRpYe9pC_kSPknWQj3Vu9pzd27GxCCX

(a) (b)

Fig. 4: Alvaro tracking results on EIS videos obtained from (a) Huawei P9 Lite

and (b) Xiaomi M2 A1 devices. EIS warped frame (red border) is superimposed

on the reference frame (blue border, best viewed in color and zoomed in).
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Fig. 5: Decomposition of EIS frame transformation according to a similarity

for (a) Huawei P9 Lite and (b) Xiaomi M2 A1 videos. x and y translation

components are indicated respectively in blue and red (best viewed in color and

zoomed in).

tus. The latter seems to be the most common behavior across

many devices, and explains why PRNU alignment can often

work, disregarding of EIS, on sufficient long sequences, as most

of the frames will result aligned to the reference first frame.

Concerning the Huawei P9 Lite, it was also experimentally

verified that its EIS aversion to get back to the reference frame

status holds until exiting from the software interface, i.e., it

holds even if one stops and starts again the video recording in

the same session. Moreover, for this device the PRNU signal

appears to be very weak. This is especially true for flat I-frames

that seem not to be the best choice for extracting PRNU, as the

intra-frame compression in case of highly compressible images,

such as for flat scenes, may strongly disrupt the PRNU compo-

nent. Structured scenes characterized by homogenous content,

defined borders and low frequency textures seem more appro-

priate. The experimental validation of this claim is reported in

Fig. 6.

5. Conclusions and future work

This paper explored and discussed content-based image reg-

istration with the purpose of dealing with (and better under-

standing) EIS in the context of PRNU alignment. In particular,

a novel and robust solution to extrapolate the transformation

relating the different image output formats for a given device

model was proposed. This general approach can be adapted to
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Fig. 6: Huawei P9 Lite PRNU signal evaluation. The reference PRNU fin-

gerprint extracted from 15 flat photos at native resolution is compared against

the fingerprint extracted from the first I-frames of EIS videos. (a) Sample flat

scene employed for the acquisition of the native resolution photos. (b) Sample

structured (top) and flat (bottom) scenes employed for the acquisition of the

first I-frames of EIS videos. (c) PCE between the native resolution photo and

EIS video fingerprints according to different scale factors, evidencing how flat

I-frames contain weak PRNU signal (best viewed in color and zoomed in).

extract the scale factor, and when appropriate the translation,

so as to align native resolution images to video frames, with or

without EIS on, and eventually to compare PRNU patterns. The

proposed approach has shown to be more reliable, more accu-

rate and faster than state-of-the-art approaches based on brute-

force and particle swarm optimization. Furthermore, a track-

ing system able to revert back EIS in a controlled environment

was designed. This allows one to investigate the differences be-

tween the existing EIS implementations. The additional knowl-

edge thus acquired can be exploited and integrated in order to

design and implement better future EIS-aware PRNU pattern

alignment methods.

Future work will move towards this direction, aimed at de-

vising approaches able to better deal with EIS frame rotation.

Additionally, further device models will be investigated, so as

to extend the knowledge provided by this data into a shared

database.
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