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1 Introduction
Since the end of the 1970s, interest in image sequence
analysis—specifically motion analysis—has rapidly in-
creased due to the enhancement of technology, which has
greatly broadened the potential fields of application of image
processing. Several application areas can take advantage of
the extraction of dynamic information embedded in image
sequences. These areas include industry (dynamic process
monitoring, autonomous mobile robots, automatic vehicles)
biomedical engineering (heart motion analysis, blood-flow
monitoring), communications (TV bandwidth reduction, tele-
conferencing), environmental monitoring (accident detec-
tion, traffic-flow surveillance), and remote sensing (atmo-
spheric pollution monitoring, cloud motion estimation).

Motion analysis is typically performed in two steps. In
the first step, a 2-D velocity field is extracted from the raw
image data; then, in the second step, this field is used to infer
information about the 3-D imaged scene1 and/or the motion
of the observer.2

Two main approaches exist for computation of the 2-D
velocity field. A sparse 2-D field is obtained by detecting and
tracking salient features of moving objects in the scene.3 On
the other hand, by exploiting the correlation between the
spatial and temporal variations of image brightness, a dense
motion field is estimated, which is usually referred to as
optical flow (OF).4

The main advantage of a dense field over a sparse field is
that the former can be helpful in performing image segmen-
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Abstract. The use of optical flow fields in image sequence analysis al-
lows us to perform motion-based segmentation as well as 3-D recon-
struction. Many techniques for optical flow estimation are based on some
global or piecewise global smoothness assumption. Other techniques
compute the flow field based only on local information. A local algorithm
explicitly addressing the problem of evaluating a reliable optical flow field
at motion boundaries is presented. Velocity vectors are computed as
solutions of a multiwindow least-squares problem; the field is then
regularized by a vector median filter. The algorithm is noniterative and
nonparametric. Results on both synthetic and real-world sequences are
shown; a performance comparison with two well-known techniques dem-
onstrates the effectiveness of the algorithm in terms of noise rejection,
motion boundary preservation, and speed.

tation based only on motion cues. (There is some experi-
mental evidence that biological vision systems also have this
ability.5) The spatial discontinuities of OF play a major role
in achieving this task. Unfortunately, the evaluation of OF
at its points of discontinuity (motion boundaries) has proved
to be a serious problem, in that the estimated field is usually
either noisy or incorrectly smooth in the neighborhood of
these points.

In this paper an algorithm that allows the estimation of a
dense velocity field with special attention to motion boundary
preservation is proposed. The algorithm works by performing
the following steps at each image pixel:

1. Partition the pixel's neighborhood into a small number
of asymmetric and overlapping subwindows.

2. Compute, at each subwindow, the velocity vector as
the solution of a least-squares (LS) problem.

3. Select, as the OF solution, the most reliable among the
velocity vectors computed in the previous step.

This paper is organized as follows: First, the OF com-
putation problem is stated and some known methods for its
solution are briefly discussed; second, the details of the al-
gorithm are given; then, some results are discussed; and,
finally, conclusions are offered.

2 Optical Flow Techniques
A linear equation that constrains the two unknown velocity
components u and v at each image pixel (x,y) and any time
t can be obtained by assuming the stationarity of image
brightness6:
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Eu + Ev + E = 0 , (1) gorithm presented in the following section attempts to remove
the drawback exhibited by this LS method while preserving

where E, E, and E stand for the spatial and temporal partial its good noise insensitivity.
derivatives of image brightness E(x,y,t).

Equation (1) alone is not sufficient to determine the OF 3 The Multiwindow LS Algorithm
vector univocally; actually, it constrains the vector (u,v) to Let us assume we have a small region w(i,j) of the image in
belong to a line in the velocity space, usually referred to as which the OF is known to be uniform (for example, a patch
a constraint line. [However, it is easy to show that Eq. (1) completely contained in a translating or very slowly rotating
can be used to compute the OF component along the direction object). Then, in principle, the constraint lines at N points
of the local brightness gradient.] Computing OF by Eq. (1) (p,q) n w(i,j) should intersect at a point ofthe velocity space
is thus an underconstrained problem whose solution needs representing the speed of the whole patch. Actually, due to
the introduction of additional constraints. In the following, image noise and approximation errors in the estimation of
some approaches to OF computation are summarized. derivatives, the constraint line parameters can be grossly in-

Horn and Schunck6 suggest exploiting the intrinsic correct. However, supposing N>2 and that these errors are
smoothness of the OF of a single object to achieve coupling randomly and independently distributed, a LS pseudo-
of another constraint with Eq. (1). Their algorithm involves intersection of the constraint lines can give a good estimate
the minimization of a functional including two penalty terms: of the true solution. Specifically, given the overconstrained
a measure of the distance of the solution from the constraint linear system
line and a measure of the departure from smoothness of the
local field. The main problem with this algorithm is that the E(p,q)u + E(p,q)v + E(p,q) = 0 (p,q) a w(i,j) , (2)
condition of a smooth flow field is not met in particular zones
of real images, namely, the boundary points between two the pseudo-intersection is obtained by minimizing the resid-
occluding moving objects. More generally, the imposition of ual square error:
the smoothness constraint over the whole image space intro-
duces a correlation among the field vectors at virtually all (u,v) — [E(p,q)u + E(p,q)v + E(p,q)]2 , (3)
image points, a link that has no physical reason. (p,q)w(i,j)

The algorithms involving the minimization of similar
that is, by solving the following 2 X 2 linear system, obtainedfunctionals7'8 e called global and usually produce an in- by setting to zero the partial derivatives of with respectcorrect flattening of the computed field.
to the velocity components u and v:Other techniques have recently been proposed that are also

based on the solution of an optimization problem. Image

[

E E(p,q)brightness and OF are modeled as 2-D Markov random fields
and the concept of line processes9 is introduced to account

(p,q)Ew(i,j)for motion discontinuities.'°12 The OF and motion bound-
aries are simultaneously and iteratively estimated, penalty E(p,q)E(p,q)
terms only being imposed far from discontinuities, thus yield- (p,q)E w(i,j)
ing a piecewise global optimization. Despite the interesting
result that a simultaneous OF estimation and segmentation

]

. (4)

can be achieved, such techniques suffer from the disadvan-

[

_ E(p,q)E(p,q)
tage of being parametric and computationally demanding. >< I =

Conversely, local techniques are known to be simple and [v
fast. They exploit the information from a small neighborhood E(p,q)E(p,q)
around the examined pixel, either by collecting constraint (p,q)Ew(i,j)

lines of neighboring points and solving the resulting over-
Note that Eq. (4) does not have a unique solution if theconstrained set of linear equations'3'14 or by determining
coefficient matrix has a rank less than two. This can happenmore than one constraint at each pixel.'5'7 Local techniques
in areas where the image gradient is either zero (constraintdo not impose any a priori smoothness over large patches lines are not defined) or has a uniform orientation (constraintof the image, thus also offering the advantage of eliminating
lines are parallel and are thus without any finite point ofundesirable flattening effects. The main drawback of such
intersection); in such cases, any local computation of OFtechniques is that they are ill-conditioned in certain regions
becomes ill-conditioned. To avoid this pitfall, the dimensionsof the image plane—i.e., regions of approximately uniform
of the region w(i,j) must be big enough to grant sufficientbrightness or where spatial image gradient information is
variability of the gradient.nearly unidirectional—where a quite noisy flow field is eval-

For OF computation at each image point, the LS techniqueuated, thus creating the need for a postprocessing regulari-
can be used by collecting constraint lines from a square neigh-zation step.16'18
borhood of each pixel. A neighborhood size of 5 X 5 pixelsA straightforward local technique is based on the LS so-
is often large enough to avoid ill-conditioning and smalllution of the overconstrained linear system obtained at each

image pixel by collecting constraint lines from its neighbor-
enough to keep the condition of uniform motion inside it:

ing points.'3 Although quite insensitive to image noise, this w(i,j) — [(p,q): —2p— i2 and — 2q —j2] . (5)method is grossly in error when the examined neighborhood
is crossed by a motion boundary, i.e., when constraint lines As previously mentioned, the LS algorithm is attractive be-
belonging to different moving objects are collected. The al- cause it is quite noise insensitive (as is every error-

E(p,q)
(p,q)Ew(i,j)
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minimization method) and is a local technique. Unfortu-
nately, it has the drawback of producing an unsatisfactory
flow field at the points of occlusion between objects having
different motion, and, as such, the hypothesis ofquite uniform
motion over the neighborhood is no longer valid.

A similar problem is encountered in image processing
when attempting to reduce image noise by low-pass filtering;
although a weighted mean operation over a uniform area
eliminates random noise due to the acquisition process, it
also has the undesirable effect of blurring image contours. It
is thus necessary to distinguish between the variations of
image brightness due to noise and those due to discontinuities.
Nagao and Matsuyama19 propose a solution to this problem.
A square window around the pixel is partitioned into a small
number of asymmetrical overlapping subwindows. The var-
iance of the gray value of the pixels in each subwindow is
then computed, and the subwindow producing the minimum
variance is selected. Subwindows are designed in such a way
that, even at a contour pixel, at least one of them will belong
entirely to the same uniform region as the center of the win-
dow, thus exhibiting a minimum of the variance. The mean
value of the gray level of the pixels in this subwindow is
then assigned to the center of the window. This algorithm
assumes that the SNR of the image is quite high, so that the
brightness variations due to noise are smaller than those due
to image texture.

In this paper we argue that a similar approach can be used
to compute OF and achieve good motion boundary preser-
vation. For example, it is possible to partition a 9 X 9 neigh-
borhood of the generic pixel where OF has to be computed
into a set of nine 5 X5 overlapping asymmetrical subwin-
dows, as in Fig. 1 . The subwindows are designed so as to
enhance the probability that at least one of them will belong
entirely to the same moving object as the central pixel. The
LS method mentioned earlier is used to compute a velocity
solution (u,v) in w(i,j), n =0, 1 8; among the solutions
obtained, the one exhibiting the minimum residual square
error is chosen and assigned to the center ofthe neighborhood
as its OF vector, that is,

(u,v) = (uk,vk): wk(uk,vk)—

n=O,1 8. (6)

If the examined pixel is at the border of an object, it is likely
that at least one of the considered subwindows is entirely
inside the object (as happens for subwindow w1 in Fig. 2).
That subwindow will then almost surely exhibit the minimum
residual square error if the errors affecting the constraint lines
parameters are assumed to be small enough to produce a
residual not bigger than the one obtained in a system with
constraint lines related to different speeds. Moreover, it is
argued that the algorithm will also improve the performance
at pixels far from motion boundaries, in that the multiwindow
system gives the possibility of obtaining a LS solution from
a selected and reliable subset of neighboring constraint lines.

Since the number K of neighbor pixels actually involved
in the LS solution is variable (in each subwindow only the
pixels having a gradient magnitude different from zero are
considered), to avoid altering the comparison, residuals
must be normalized by K.

Despite the accurate choice of the subwindow size, some
gross errors will result—as mentioned above—in certain im-
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age regions, due to ill-conditioning. The computed field will
also appear quite irregular due to image noise. Therefore, we
must perform an OF regularization step; this can be suc-
cessfully accomplished by vector median filtering,20 a tech-
nique whose nonlinear nature ensures better motion boundary
preservation than the traditional averaging operators.'6

4 Results
The algorithm was tested both on synthetic and real-world
image sequences. A comparison of the results obtained run-
ning the classical LS algorithm,'3 the multiwindow LS tech-
nique proposed in this paper, and the well-known Horn and
Schunck iterative method6 on two 128 x 128 sequences is
presented here. The two LS algorithms use a window size of
9 x9; vector median regularization is performed by means
of a 5 X 5 neighborhood and a fast approximation of the L1
norm.2' The smoothness parameter for the Horn and Schunck
algorithm is set to 1 and the number of iterations to 64; in

Hffl WH

Fig. 1 Structure of the nine subwindows partitioning the processed
window.

Fig. 2 Case of a window centered at a boundary pixel, and the
corresponding subwindow that should give the minimum residual
error.
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Fig. 3 Second frame of the SYNTH sequence; all textures are si-
nusoidal gratings.

Fig. 5 Field resulting by applying the classical LS algorithm to the
SYNTH sequence; with regularization.

Fig. 4 Field resulting by applying the classical LS algorithm to the Fig. 6 Field resulting by applying the multiwindow LS algorithm to
SYNTH sequence; without regularization. the SYNTH sequence; without regularization.

this case, no regularization is performed, as the algorithm has
an implicit smoothing effect on the produced field. Deriva-
tives E, E, and E are approximated by finite symmetrical
differences; temporal derivatives below a threshold of two
gray levels are considered to be effects of noise only and are
thus set to zero.

Figure 3 shows the second frame of a synthetic sequence—
referred to as SYNTH—in which two textured squares 50
pixels wide are moving over a still background. The upper
left square translates by 1.5 pixels/frame both down and right

and partially occludes the other one, which rotates clockwise
by 3 deg/frame. A zero-mean white Gaussian noise (if2 30)
is added to each frame.

The flow fields resulting from processing the SYNTH
sequence by the three test algorithms, along with the com-
puted boundaries of the moving objects, are shown in Figs.
4 through 8; it is evident from a qualitative comparison of
these results that the multiwindow LS algorithm performs
better than the other two methods, especially on motion dis-
continuities.

OPTICAL ENGINEERING/June 1993/Vol. 32 No.6/1253
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Fig. 7 Field resulting by applying the multiwindow LS algorithm to
the SYNTH sequence; with regularization.

Fig. 8 Field resulting by applying the Horn and Schunck algorithm
to the SYNTH sequence.

A quantitative comparison of the performance of the three
algorithms can also be made by referring to Table 1 ,where
the rms error (RMSE) together with the processing time re-
quired by the various algorithms is shown. It is worth noting
that the regularization step has significant effects only on
those vectors that are grossly in error (for example, the in-
correct vector near the upper corner of the translating square
in Fig. 6 has disappeared in Fig. 7), thus having no great
influence on RMSE performance. The multiwindow LS ap-
proach saves a considerable amount of processing time; in

1254/OPTICAL ENGINEERING / June 1993 / Vol. 32 No. 6

Table 1 RMSE of the field computed by the various algorithms and
relative processing times.

Algorithm RMSE
(edges)

RMSE
(overall)

Processing
Time (s)

Classical LS
without regularization

0.933 0.354 12.0

Classical LS

with_regularization

0.93 1 0.346 15.0

Multiwindow LS
without regularization

0.789 0.291 3.8

Multiwindow LS
with regularization

0.718 0.246 6.8

Horn & Schunck 0.905 0.346 26.6

Fig. 9 Seventh frame of the ROBOX sequence.

fact, because each 5 X5 patch is actually a subwindow for
nine different 9 X 9 windows, the computational burden for
this algorithm can be made only slightly bigger than that of
a classical LS algorithm using 5 x 5 windows.22

Figure 9 shows a frame of the real-world ROBOX se-
quence. The imaged objects are a cookie box rolling over a
table by 3 deg/frame and a small mobile robot approaching
the camera plane by 1 cm/frame. The flow fields computed
with the classical LS, the multiwindow LS, and the Horn and
Schunck algorithms are shown respectively in Figs. 10, 11,
and 12. The multiwindow LS approach is again demonstrated
to be effective in preserving motion boundaries (compare,
for example, Fig. 1 1 with Fig. 10, where the undesired effect
of motion boundary enlargement is particularly evident) and
to be more robust than the others with respect to noise.

Figure 13 is a map of the residual error obtained with the
multiwindow LS approach; the residual can be taken as a
measure of the departure of the OF field from the condition
of uniform motion. Note that the highest residual values are
reached in the image area where rotation takes place, the
nonuniformity ofthe field being lower where OF is diverging.
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Fig. 10 Field resulting by applying the classical LS algorithm to the
ROBOX sequence; with regularization.

Fig. 1 1 Field resulting by applying the multiwindow LS algorithm to
the ROBOX sequence; with regularization.

5 Conclusions and Future Work
In this paper, a multiwindow LS approach to OF computation
has been proposed. While maintaining the advantage of noise
insensitivity ofa classicalLS algorithm, this technique avoids
blurring at motion boundaries by the use of a suitable par-
titioning of the neighborhood of each pixel.

The algorithm is quite simple, nonparametric, and fast,
since computations are carried out in a local and noniterative
fashion. The ill-conditioned nature exhibited by local tech-
niques in some cases (e.g., low or unidirectional image gra-

Fig. 12 Field resulting by applying the Horn and Schunck algorithm
to the ROBOX sequence.

Fig. 13 Map of the normalized residual error resulting from the ap-
plication of the multiwindow LS algorithm to the ROBOX sequence;
darker points denote higher residual values.

dient), the presence of noise, and the absence of any a priori
smoothing make an a posteriori regularization of the re-
sulting flow field necessary. This is accomplished by a non-
linear technique, vector median filtering, which exhibits good
noise removal performance and preserves the detected motion
discontinuities well.

Further observations can be made, suggesting some di-
rections for future work.
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The multiwindow approach proposed here is actually in-
dependent of the particular technique used to compute the
optical flow in each subwindow. That is, local techniques
other than LS, either novel or conventional, could indeed be
adopted, given that an a posteriori error measure is available.
Thus, the multiwindow approach is to be considered a corn-
putational superstructure applicable to a suitable substrate
algorithm. A similar concept can be found in the paper by
Schnörr,23 in which the Horn and Schunck algorithm is used
inside adequate subsets of the image plane.

The LS technique was chosen in this work for its simplicity
and speed; on the other hand, experiments have proved that
this technique is quite sensitive to gross (impulsive) errors
on the constraint lines, frequently occurring at motion bound-
aries. In attempting to enhance the robustness ofthe technique
against these kinds of errors, two directions are feasible:
(1) considering different choices of the number, dimension,
and shape of the subwindows and (2) experimenting with
alternative traditional or novel substrate algorithms. A par-
ticularly promising novel local approach that makes use of
vector median techniques is currently being tested.22
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