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Abstract. Image matching, as the task of finding correspondences in
images, is the upstream component of vision and photogrammetric ap-
plications aiming at the reconstruction of 3D scenes, their understand-
ing and comparison. Such applications are of special importance in the
context of cultural heritage, as they can support archaeologists to digi-
tally preserve, restore and analyze antiquities, but also to compare their
changes over time. The success of deep learning, now firmly established,
paired with the evolution of computer hardware, has led to many ad-
vances in image processing, including image matching. Despite this pro-
gress, image matching still offers challenges, in terms of the matching
process itself but also on other practical and technical aspects. This pa-
per gives an overview of the current status of the research in image
matching with a particular focus on cultural heritage, presenting both
strengths and weaknesses of the most recent approaches by means of vi-
sual comparisons on exemplar challenging image pairs. Besides assisting
researchers and practitioners in the choice of the most suitable solution
for a given task, this analysis also suggests lines of research worth to be
investigated by the community in the near future.
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1 Overview

1.1 Introduction

Image matching [33] plays a key role in the design of reliable and effective vision
and photogrammetric methods, which represent nowadays an essential resource
in several fields of human knowledge and technology dealing with digital im-
ages. In particular, the preservation and valorization of cultural heritage can
greatly benefit from images, which are often the unique source of data for re-
trieving valuable information [13,37]. The image matching task can be summa-
rized as the detection of correct correspondences between two or more images
of the same 3D scene, taken under different viewpoints, acquisition conditions
or times. Image matching can be restricted to a sparse set of well characterized
points extracted with traditional handcrafted methods or more recent learning-
based approaches [25]. These sparse correspondences are normally used within
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the Structure-from-Motion (SfM) image orientation process, where they get re-
fined by exploiting globally inherent geometric constraints in an optimization
scheme known as bundle adjustment. The usual SfM output consists in the cam-
era network configuration, i.e. the camera poses and calibration parameters,
as well as a sparse 3D point cloud of the surveyed scene [31]. The recovered
camera network configuration is then employed to obtain a finer and more com-
plete 3D description of the scene by applying dense image matching methods,
either pairwise or exploiting Multi View Stereo (MVS) [33,26]. Popular open
source processing pipelines are COLMAP [29], OpenMVG+OpenMVS [23,24]
and Meshroom [1], actively updated and extended by the research community.
Several good commercial tools for professional use exist too.

1.2 Traditional image matching

Until recently, sparse image matching for SfM has been characterized by the
following steps: (1) detecting keypoints, (2) localizing meaningful and salient
regions of the image, (3) extracting these regions as patches, generally normal-
ized in order to achieve invariance to image transformations, (4) computing the
descriptor vectors associated to keypoints, whose distance is used to establish
the candidate correspondences, (5) filtering the correspondences according to de-
scriptor statistics, for instance using the best and second best overall distances,
and (6) filtering the surviving matches by means of spatial global or local con-
straints, as those provided by epipolar geometry [14] exploited through RANdom
SAmple Consensus (RANSAC) [12].

Scale Invariant Feature Transform (SIFT) [18] has dominated sparse image
matching for nearly two decades. SIFT matching relies on blob-like keypoints,
whose associated patches are normalized to become invariant to scale and rota-
tion changes. For each patch, the SIFT descriptor is computed as the histogram
of the gradient orientation, correspondences are then assigned according to the
Euclidean distance between descriptors, and the Nearest Neighbor Ratio (NNR)
strategy, often followed by RANSAC, is employed to rank them. SIFT provides
a handcrafted, highly engineered and optimized matching approach, still valid
today and able to obtain robust results. Indeed, all the previous mentioned
SfM pipelines are based on SIFT (actually on RootSIFT [3], which introduces a
slight variation in the descriptor computation). That said, further alternatives
or extensions to the standard SIFT matching pipeline have been proposed with
mixed fortunes during the years. The interested reader may refer to [2,15,19,33]
for some recent and comprehensive reviews and comparisons.

1.3 Learning-based image matching

As in other computer vision areas, the advent of deep learning has represented
a breakthrough for image matching. Besides handcrafted approaches designed
on the basis of human intuition and expertise, machine learning techniques have
been employed with encouraging results mainly in the design of more robust and
efficient keypoint descriptors, often referred to as data-driven descriptors [19].
A remarkable turning point was undoubtedly the L2-Net deep descriptor [35],
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which outperformed SIFT in many challenging scenarios. L2-Net is at the basis
of the architecture for the HardNet descriptor [21], currently the state-of-the-art
standalone descriptor according to several recent benchmarks [16], and employed
successfully in many hybrid image matching pipelines [7].

Deep networks have progressively replaced the components of the image
matching pipeline, moving from hybrid pipelines to full end-to-end deep architec-
tures. For instance, besides descriptors, deep design has been successfully applied
for the patch normalization, providing invariance to rotations and to more gen-
eral affine transformations. OriNet and AffNet [22] are respectively two examples
in this sense. As an additional step towards a full image matching deep architec-
ture, end-to-end networks also integrated keypoint extraction (save for the last
matching step). SuperPoint [10] can be considered a cornerstone in this evolution
process, as it provides an effective way to train the whole network using synthetic
images and homographic adaptations, thus without depending on handcrafted
training data as with previous solutions [38]. Another successful strategy to over-
come learning difficulties in end-to-end learning was demonstrated by DIScrete
Keypoints (DISK) [36], that uses reinforcement learning. With the introduc-
tion of deep learning, alternatives to the detect-then-describe paradigm which
binds the descriptor characterization to the keypoint definition, typical of the
classic image matching pipelines, were also proposed. The detect-and-describe
D2-Net [11] and the describe-to-detect D2D network [34], respectively treats as
equal or gives more priority to the descriptor optimization than to the keypoint
extractor. Another aspect that emerged is the gradual shift in the design of the
network architecture and of the loss function towards solutions that strongly re-
semble their handcrafted counterparts, of which the respective deep equivalents
appear as differentiable versions to be optimized on training data.

More recently, the final steps of the image matching pipeline have been ab-
sorbed into deep architectures too. This adaptation has started with the intro-
duction of context normalization [39], which made it possible to effectively filter
correspondences according to spatial constraints, and has gone further with the
Order Aware Network (OANet) [40] up to the more recent SuperGlue [28]. This
last state-of-the-art deep network is a full end-to-end deep architecture based on
SuperPoint [10], able to associate and discard candidate matches on the basis of
spatial information and descriptor statistics, relying for this last aspect on at-
tentional graph neural networks. The Local Feature TRansformer (LoFTR) [32]
futher added a coarse-to-fine schema to obtain semi-dense correspondences. Fi-
nally, it is worth mentioning the use of deep architectures such as in [17] for
further refining the bundle adjustment 2D input and 3D output point localiza-
tion, even if not directly involved in the matching process.

2 Analysis and evaluation

2.1 Rationale

For the comparison of image matching pipelines in photogrammetry and com-
puter vision applications, two criteria are generally and reasonably set out. On
the one hand, there is the ability to establish matches in the case of severe image
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transformations, and on the other hand, the localization accuracy of the estab-
lished matches. Often these two criteria tend towards opposite goals, as a better
matching ability implies to include correspondences localized less accurately.

Several comparisons of image matching pipelines specifically designed for
SfM have been proposed through the years. In this respect, the main problem
researchers had to face was the unavailability of reliable Ground-Truth (GT)
data. In order to circumvent this problem, [30] proposed to rank the matching
methods according to specific statistics of the final SfM reconstructed 3D model,
such as the number of register images, the mean reprojected error of the 3D
points in the images, the track length and the point cloud size. As shown in [8],
this solution does not correlate well with an accurate GT. A better approach is
proposed in [16], which builds a pseudo GT by running a SfM pipeline on a rich
set of images of the scene with a good coverage, and then verifies the match-
ing pipelines indirectly according to the pose error obtained using a restricted
and more challenging subset on the initial images. Another solution, explored
by SimLocMatch5, relies instead on synthetic rendered scenes as effective GT
data. Finally, the approach employed in [8] makes use of accurate metric GT
data provided by topological surveys in terms of ground control points. These
points are used to establish check points upon which to measure pose errors very
accurately, hence again providing an indirect evaluation of the image matching
pipeline. Pseudo GTs generally offer a reasonable rough estimation, in particu-
lar in terms of matching ability, giving rise to an indirect evaluation that gets
a method ranking very close to those obtained through a direct comparison on
synthetic datasets. However, when it comes to analyze matching pipelines with
high and similar levels of matching accuracy, the metric GT approach on real
scenes leads to a better evaluation, even if the relative datasets are more difficult
to obtain. It should also be taken into account that the level of scene complexity
achieved by synthetic rendered images is inferior to that of real images and, as it
was noted in [8], also the bundle adjustment setting, besides the image matching
pipeline setup, may assume a critical role in the final pose estimation accuracy.

Among the most recent benchmark comparisons, the Image Matching Chal-
lenge (IMC)6 has become an annual appointment to test the latest developments.
Although currently only relying on pseudo GTs following [16], and not properly
focused on cultural heritage, it has represented a good starting point for any
successive investigation aiming at a realistic snapshot of the current situation.
In the lastest IMC (2021) the fully end-to-end networks SuperGlue, LoFTR and
DISK, and the Hybrid Pipeline (HP [8]) based on HarrisZ+ [7] obtained the
best results, a ranking that was confirmed also by SimLocMatch. Some of these
methods were included in other evaluations more focused on cultural heritage
applications, where their superiority over other approaches was generally con-
firmed. In particular, [8] addressed the analysis of the metric accuracy of several
matching methods on modern image datasets, while [20] employed the IMW
benchmark configuration on historical images ranging from 1860 to today.

5 https://simlocmatch.com/ (currently offline)
6 https://www.cs.ubc.ca/research/image-matching-challenge/current/

https://simlocmatch.com/
https://www.cs.ubc.ca/research/image-matching-challenge/current/
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2.2 Results and discussion

According to [8], in terms of SfM pose estimation accuracy, SIFT pipeline is still
competitive and among the best with respect to the recent approaches when
the camera network is robust and provides a good coverage of the scene, i.e.
with “close” images having a high overlap and low relative distortions in terms
of both viewpoint and illumination changes. However, when these assumptions
are not satisfied, the ability to robustly match in the presence of strong image
deformations, even if less accurately, becomes essential. In fact, this helps keep-
ing image connections in the camera network and avoids failures in registering
some images, which would affect the performance of the whole SfM pipeline. For
this reason, the following discussion will not address the keypoint localization
accuracy (and hence the camera pose accuracy), extensively covered by previous
literature (see Sec. 2.1), but will focus instead on the ability of each pipeline to
provide more or less precise correspondences in challenging scenarios that are
likely to be found in cultural heritage: it is not-so-infrequent to have to register
images acquired from different viewpoints (e.g. aerial and terrestrial images), by
different cameras, with different illumination conditions and at different times
(e.g. multitemporal images) with the aim to detect the occurred changes.

The chosen evaluation protocol that defines matches as correct is the one
proposed in [6] and extended in [4] using hand-taken correspondences. These
hand-taken matches are employed to obtain the epipolar geometry of the scene,
so as to filter candidate matches on the basis of the epipolar error, and to com-
pute a rough interpolated optical flow over the images to further refine filtered
matches, since epipolar error only cannot be sufficient to disambiguate them.
This protocol is reasonable for the qualitative evaluation through visual inspec-
tion presented hereafter, with a minimal probability of obtaining a wrong GT
estimate. While providing a quantitative evaluation for challenging scenarios is
in most cases unfeasible due to major difficulty to obtain an accurate metric GT,
the proposed qualitative evaluation is sufficient to describe the potential and the
limits of the compared methods. Besides, this setup does not employ synthetic
images, and provides a direct evaluation on the true unconstrained matching
ability of the evaluated methods.

The image matching pipelines included in this comparison are SIFT (used as
reference), HP, DISK, SuperGlue and LoFTR. For SIFT, the VLFeat implemen-
tation is used7, for HP and DISK the code available by the respective authors is
employed, and for SuperGlue and LoFTR their respective Kornia implementa-
tions [27]. The matching ability on six different and challenging image pairs, with
resolution from about 1024×768 to 1500×1000, of interest for cultural heritage
is analyzed. As a good recommended practice [16], at the end of each matching
pipeline DegenSAC [9] is executed to filter matches. Since the image pairs are
quite challenging, the corresponding DegenSAC epipolar error threshold is set
to 3 px, which is relatively high for precise photogrammetry applications, but
can provide a better insight into the rough matching ability. Moreover, since this
analysis concerns with a visual qualitative localization of the correspondences,

7 https://www.vlfeat.org/

https://www.vlfeat.org/
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error thresholds for evaluation are set to 40 px. Due to lack of space, only the
most relevant matching results are shown. The reader is strongly invited to in-
spect the complete report, available as additional material together with the
evaluation code and data 8.

Figure 1 shows the optical flow of the matches superimposed on one of the
two images of the pair. The input images (shown alternated for the sake of
clarity) represent the front side of the Temple of Neptune in Paestum (Italy),
and were acquired by the same camera with fixed illumination conditions. The
scene is approximately planar but presents a relatively high viewpoint distor-
tion. SIFT was barely able to find a sufficient number of correspondences, while
the other methods worked with no critical issues. Note that HP and SuperGlue
found less correspondences but also less wrong matches (which can become an
issue in photogrammetry applications as they can invalidate the bundle adjust-
ment estimation) than DISK and LoFTR. Specifically, SuperGlue, HP, DISK
and LoFTR found matches in increasing order. Wrong matches were relevant for
LoFTR, and even more for DISK.

(a) SIFT (b) HP (c) DISK (d) SuperGlue (e) LoFTR

Fig. 1: Matching results in terms of the optical flow for an image pair of the Tem-
ple of Neptune (Paestum, Italy), displayed alternating the two images. Correct
and wrong matches are shown in green and red, respectively.

Figure 2 still refers to the Temple of Neptune, but the image pair includes
a terrestrial and an aerial image taken from an Unmanned Autonomous Vehicle
(UAV), presenting large scale and illumination variations. Only DISK was able
to provide some correct matches, while the other methods failed (of these, only
LoFTR is reported in Fig. 2). Nevertheless, DISK was not able to correctly
handle the scale variation but it was the only method to correctly localize the
small image portion of corresponding regions at a similar scale.

Figure 3 includes an image pair from the Temple of Concordia (Agrigento,
Italy), taken with two different cameras within a time interval of about fifteen
years, before and after the restoration process to which the temple underwent.
Also in this case, the images present a relevant scale variation. SuperGlue and
LoFTR were the only methods able to detect correct matches, with SuperGlue
providing less wrong matches and a better distribution of the correct ones. In
general, it seems that the coarse-to-fine approach of LoFTR, once it has found

8 https://drive.google.com/drive/folders/1ws1SvRnym3FPh1J6K4lomTIqEsxR5k49

https://drive.google.com/drive/folders/1ws1SvRnym3FPh1J6K4lomTIqEsxR5k49
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(a) DISK (b) LoFTR

Fig. 2: Correct and wrong matching results on a challenging image pair of the
Temple of Neptune (Paestum, Italy), shown respectively in green and red.

(a) DISK (b) SuperGlue (c) LoFTR

Fig. 3: Correct and wrong matching results on the image pair of the Temple of
Concordia (Agrigento, Italy), shown respectively in green and red.

putative matching areas at the coarser scale, is quite indulgent in discarding
matches at the finer scale. Differently from the previous image pair, DISK was
not able to obtain correct matches, as well as SIFT and HP (not shown). More-
over, concerning HP, only an exiguous number of keypoints was detected in the
matching region of the second image, due to a relative low global contrast of this
area with respect to the whole image.

Figure 4 shows two images from the Temple of the Dioscuri (Agrigento,
Italy), taken in the same conditions and time interval of those reported for
the Temple of Concordia. Only HP and SuperGlue were able to correctly find
correspondences. DISK and LoFTR failed to provide matches, probably due to
their inability to handle both the middle level image rotations and the repeating
patterns that occur within the overlapped regions. Notice also that HP was
able to find matches in the upper part, while SuperGlue was more effective in
the in-between part. Moreover, DISK and LoFTR produced a large number of
wrong matches. Conversely, SIFT (not shown), although unable to find correct
correspondences, found a very low number of wrong matches.

Figure 5 reports the matching results on two aerial images taken from dif-
ferent UAV strips, presenting relevant perspective distortions and a significant
relative rotation, a common situation in UAV or Autonomous Underwater Vehi-
cle (AUV) surveys. Only HP was able to fully assign matches. The other methods
failed: DISK, LoFTR and SuperGlue (the last one is not shown) due to their
invariance to even moderate rotations, while SIFT since it is unable to tolerate
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(a) HP (b) DISK

(c) SuperGlue (d) LoFTR

Fig. 4: Correct and wrong matching results on the image pair of the Temple of
the Dioscuri (Agrigento, Italy), shown respectively in green and red.

(a) SIFT (b) HP

(c) DISK (d) LoFTR

Fig. 5: Correct and wrong matching results on the image pair of the Ventimiglia
Theatre (Ventimiglia, Italy), shown respectively in green and red.

the viewpoint distortion, although being invariant to rotations (as suggested by
the presence of few correct matches). Note again that DISK, and to a minor
extent LoFTR, provided more wrong matches than SuperGlue or SIFT.

Finally, Fig. 6 presents the matching results on two views of an ancient
vase from the archaeological area of Fiavé (Trento, Italy), subjected to a strong
relative tilt change. All the methods succeeded in finding correct matches but
they also produced spurious correspondences. Specifically, SIFT, SuperGlue, HP,
DISK and LoFTR provided in order an increasing number of correct matches.
Moreover, HP and SuperGlue obtained the lowest number of wrong matches,
followed by DISK, LoFTR and SIFT. Note also that HP was the only method
able to trace correspondences at the base plane, yet it missed the matches on the
left upper part, that were detected instead by DISK and LoFTR. It is also worth
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mentioning that at the original input images resolution of 6048×4032 instead of
the current processing resolution of 1500×1000, none of the methods was able to
find correct matches, a fact that highlights the criticality of the detection scale.

(a) SIFT (b) HP

(c) DISK (d) SuperGlue

(e) LoFTR

Fig. 6: Correct and wrong matching results on the image pair of an ancient vase
(Fiavé, Italy), shown respectively in green and red.

3 Conclusions and perspective

The presented investigation showed that recent learning-based image matching
techniques provide an unquestionable advance with respect to traditional hand-
crafted methods. However, there are still issues and not a clear winner, leaving
large margins for improvement.

End-to-end LoFTR, DISK and SuperGlue are unable to handle average and
high degrees of image rotation. This issue can be circumvented by rotating one
of the input image (at least eight times for a tolerance to 45

◦) but this would be
computationally expensive, efficient solutions in this sense for handcrafted meth-
ods have been investigated [5]. Both DISK and LoFTR output a high number of
matches, including wrong correspondences. In the case of failure, this can repre-
sent a critical issue that can mislead the next steps of the SfM pipeline, but also
in case of success this can create problems due to computational requirements
for data management. Furthermore, LoFTR outputs discrete keypoint locations
for the first image and sub-pixel keypoint localizations for the second one, thus
requiring some engineering in order to handle multiple images. On the other
hand, the lower number of correspondences extracted by SuperGlue, inherited
from Superpoint, can be limiting in some cases [25].

HP is rotation invariant, provides a reasonably high number of correct matches,
outputs a low number of wrong correspondences in case of failure and is robust
to viewpoint distortions similarly to end-to-end architectures. Nevertheless, it
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is less tolerant to strong scale variations, and can have issues related with the
global image contrast. Being a modular pipeline, HP can be more easily adapted
for specific tasks. For instance, by removing OriNet from its steps can improve
its matching ability when there are no relevant rotations in the input images. Fi-
nally, the retraining of the single deep modules of HP requires less computational
efforts than with a fully end-to-end network.

That said, SIFT still offers advantages in common-user non-challenging sce-
narios, which makes it still irreplaceable in commercial applications: SIFT is less
computational expensive than its competitors with inferior hardware require-
ments, and provides state-of-the-art pose accuracy estimation in case of robust
camera network input setups [25]. Moreover, it works without efforts with high
resolution images (e.g. aerial image datasets), while its competitors cannot be
launched using a high-end consumer-grade system configuration (with the ex-
ception of HP that runs much slower than SIFT with these images anyways).
Multi-scale tiling can be devised in this case, which should also provide a so-
lution in case of relevant scale changes, but again at the expense of increasing
the computational cost, and probably decreasing the matching accuracy as the
global overview of the scene is somewhat lost.

Although recent image matching approaches can be useful for research activi-
ties dealing with challenging SfM applications in cultural heritage, these methods
are not yet fully ready and mature for common user applications. Effective so-
lutions are still an open question, which offers new research opportunities and
challenges to the scientific community, not only for the matching process itself
but also in providing efficient and scalable solutions.
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